高效液相-串联质谱法测定畜肉中地西泮及5种硝基咪唑
陈娟,翟纹静
(1. 苏州出检验检疫综合技术中心, 苏州 215100; 2. 苏州华博检测技术有限公司, 苏州 215100)
摘 要:目的 建立高效液相色谱串联质谱仪对畜肉中地西泮及5种硝基咪唑的快速分析。方法样品经乙酸乙酯提取,经过Waters Oasis MCX固相萃取柱净化,经高效液相色谱-串联质谱测定,外标法定量。选用Atlantis dC18色谱柱(2.1´150 mm,3mm)为分析柱,0.1%甲酸溶液和0.1%甲酸乙腈为流动相,电喷雾正离子多反应监测模式( MRM)进行检测。结果 6 种目标化合物在选定浓度范围内线性关系良好,相关系数( r2 )均大于0.997。方法的定量限( LOQ) 为0.5μg/kg ~ 10μg/kg,3 个添加水平的加标回收率为88.2% ~ 108.0% ,相对标准偏差≤12.4% ( n = 6) 。结论本方法前处理简便、灵敏度高、重复性好,可用于动物源性食品中样品中地西泮和5种硝基咪唑的定量检测。能够满足国家标准对地西泮、5种硝基咪唑的检测要求。
关键词:液质联用仪;动物源性食品;地西泮;硝基咪唑
Determination of diazepam and 5 nitroimidazolium in animal meat by high performance liquid chromatography tandem mass spectrometry
Abstract : Objective to establish a high performance liquid chromatography tandem mass spectrometry (HPLC / MS / MS) for meat of diazepam and 5 nitroimidazolines in animal derived foods. Methods samples were extracted by ethyl acetate and purified by Waters Oasis MCX solid phase extraction column. The samples were determined by high performance liquid chromatography tandem mass spectrometry and quantified by external standard method. The Atlantis dC18 column (2.1*150 mm, 3mm) was used as the analytical column, 0.1% formic acid solution and 0.1% formate acetonitrile as the mobile phase, and the electrospray ion multi reaction monitoring model (MRM) was detected. Results the linear relationship between the 6 target compounds in the selected concentration range was good, and the correlation coefficients (r2) were all greater than 0.997. The quantitative limit (LOQ) of the method was 0.5 μg/kg to 10μg/kg, and the recoveries of 3 spiked spiked samples ranged from 88.2% to 108%, and the relative standard deviations were less than 12.4% (n = 6). Conclusion the method is simple, sensitive and reproducible, and can be used for the quantitative determination of diazepam and 5 nitroimidazole in animal derived foods. It can meet the national standard for diazepam and 5 nitroimidazole detection requirements.
Keywords: liquid chromatography-mass spectrometry; animal derived food;diazepam;nitroimidazolines.
地西泮(diazepam)作为苯二氮卓类类抗焦虑药物[1], 具有抗焦虑、镇静、催眠、抗惊厥、抗癫痫及中枢性肌肉松弛作用[2]。这可能与其选择性地作用于大脑边缘系统,与中枢苯二氯卓受体结合而促进γ-氨基丁酸(GABA)的释放或突触传递功能有关[6-8]。 通过刺激上行性网状激活系统内γ-氨基丁酸受体从而增强对中枢神经系统的抑制性, 从而提高人体脑干网状结构受到刺激后皮质与皮质边缘觉醒反应的阻断性[9]。虽然可以通过肝脏代谢生成奥沙西泮,但是依然具有生物活性,可以在人体内累积,具有一定的危害[10-11]。
硝基咪唑类药物是一类人工合成的抗菌药物,是由咪唑在浓硫酸中硝化而得,5-硝基咪唑是重要医药中间体[12]。硝基咪唑类对厌氧菌及原虫有独特的杀灭作用,与其他抗生素联合应用于临床的各个领域。由于它具有潜在的致癌、致畸、致突变作用和遗传毒性[13]因此在兽药残留监控检测中需要寻求更加简单、快速、精确的检测方法。有关文献报道该类药物的HPLC-MS-MS 检测方法中[14-15],可采用毒性大的含氯有机提取溶剂、检测限过高,试剂毒性较大等不足[15]。本文拟在前人研究基础上,进一步优化寻找一种简单、快捷、回收率好,能同时测定动畜肉中甲硝唑(Metronidazole,MNZ)、地美硝唑(Dimetridazole,DMZ)、洛硝哒唑(Ronidazole)、羟甲基甲硝咪唑(HMMNI)和羟基甲硝唑(MNZOH) 的高效液相串联质谱法检测方法[26-18]。
(陈娟,女,1990年,初级工程师,本科,主要从事食品检验工作)
2 材料与方法
2.1材料与试剂
Agilent 6470 液质联用仪、氮吹仪(Organomation N-EVAP)、涡旋混合器(IKA) 、电子天平(METTLERAE100)、高速离心机(湖南湘仪 H2050R)、Milli-Q超纯水器(Milli-Q, 美国);Atlantis dC18色谱柱(2.1×150 mm,3mm)色谱柱、Waters Oasis MCX固相萃取柱(6cc/120 mg,使用之前依次用甲醇3mL和水3mL活化);
地西泮(Diazepam 纯度99.4%)、甲硝唑( Metronidazole,MNZ 纯度99.9%) 、地美硝唑( Dimetridazole,DMZ纯度99.9% ) 、洛硝哒唑(Ronidazole 纯度99%)、羟甲基甲硝咪唑(HMMNI 纯度99%)和羟基甲硝唑(MNZOH 纯度99.4% )。
2.2 溶液的配制
标准储备溶液(1.0mg/mL):准确称取10mg标准品物质,用甲醇溶解后定容至10mL,置于-18°C冰箱冷藏保存。标准品稀释溶液(10.0mg/L):准确吸取100ml标准储备溶液,用甲醇定容至10mL,置于-18°C冰箱冷藏保存。
标准物质曲线:将标准稀释液10ml用甲醇定容至1mL,溶液浓度为100mg/L。取准确移取标准稀释溶液(100mg/L)5.0ml, 10.0ml, 25.0ml, 50.0ml, 100.0ml, 200.0ml用乙腈:水(1:9)定容至1.0mL,得到浓度分别为0.5、1、2.5、5、10、20mg/L 的标准溶液。
2.3 前处理方法
称取样品2g(精确到0.01g),置于50mL离心管中,加5ml乙酸铵缓冲液,高速涡旋,在加15ml乙酸乙酯涡旋混匀,离心去已经层到另一个干净的离心管中。残渣中再加入15ml乙酸乙酯重复上述步骤,合并上清液定容至刻度。
将提取液经固相萃取柱富集净化。以1ml/min的速度过MCX柱(分别用6ml乙腈、6m L磷酸溶液活化),随后用2 m L磷酸溶液,2ml甲醇-水(40∶60,V/V)淋洗并抽干,最后用6ml含3%氨水的乙腈洗脱。洗脱液在氮气流下吹至近干,用1ml乙腈-水(10∶90,V/V)定容,过 0.22 μm滤膜,滤液供LC-MS-MS测定。
2.4仪器条件
2.4.1色谱条件
色谱柱: Atlantis dC18色谱柱(2.1´150 mm,3mm);进样量为20.0ml;柱温为35°C。流动相: 0.1mol/L甲酸水溶液:0.1%甲酸乙腈=90:10(v/v);
表 1梯度洗脱程序
Table 1 The gradient conditions
t / min 流速/ (mL/min) 流动A /% 流动B /% |
0.0 0.3 90 10 1.0 0.3 90 10 8.0 0.3 15 85 10.0 0.3 15 85 10.1 0.3 90 10 13.0 0.3 90 10 |
2.4.2质谱条件
电离源模式:电喷雾离子源(electrospray ionization, ESI);电离源极性:正模式(ESI+);检测方式:多反应监测(multi-reactions monitoring, MRM);电喷雾电压:3500V;鞘气温度:250 ℃;鞘气流速:11 L/min;干燥气流速11 L/min;干燥气温度:325℃;其他质谱参数见表1。
表26种化合物的质谱分析参数
Table 2 Mass spectrometric analysis parameters of 16 compounds
化合物名称 |
母离子 |
子离子 |
半峰宽 |
电压(V) |
碰撞能量(V) |
极性 |
||||||||||
地西泮 |
|
|
|
|
|
|
||||||||||
285 |
193* |
20 |
120 |
35 |
正 |
|||||||||||
285 |
153.9 |
20 |
120 |
30 |
|
|||||||||||
洛硝哒唑 |
201.1 |
140 |
20 |
90 |
4 |
正 |
||||||||||
201.1 |
55* |
20 |
90 |
18 |
|
|||||||||||
羟基甲硝唑 |
188.1 |
126 123* |
20 |
90 |
15 |
正 |
||||||||||
188.1 |
20 |
90 |
10 |
|
||||||||||||
甲硝唑 |
172.1 |
128 |
20 |
90 |
12 |
正 |
||||||||||
172.1 |
82* |
20 |
90 |
26 |
|
|||||||||||
羟甲基甲硝唑 |
158.1 |
140* |
20 |
90 |
10 |
正 |
||||||||||
158.1 |
55 |
20 |
90 |
18 |
|
|||||||||||
地美硝唑 |
142.1 |
96* |
20 |
90 |
14 |
正 |
||||||||||
142.1 |
81 |
20 |
90 |
30 |
|
注:*定量离子。
3 结果与分析
3.1线性响应试验结果
地西泮和5种硝基咪唑类药物的回归方程及相关系数如表2所示。结果显示标准曲线相关系数为0.997~0.999,在0.5μg/kg ~ 10μg/kg范围内线性良好(如下表3所示)。分别将6种物质都加入0.5μg/kg,1.0μg/kg,5.0μg/kg三个点,其中甲硝唑平均加标回收率分别为:98.1%,104.5%,95.28;羟甲基甲硝咪唑平均加标回收率分别为:107.3%,94.2%,94.1%;地美硝唑平均加标回收率分别为:88.1%,91.6%,88.1%;洛硝哒唑平均加标回收率分别为:89.1%,93.8%,101.4%;羟基甲硝唑平均加标回收率分别为:92.0%,105.1%,96.6%;地西泮平均加标回收率分别为:89.2%,90.5%,99.8%。
表3 6种化合物的回归方程
The regression equation of 36 kinds of compounds
化合物名称 |
回归方程 |
相关系数 |
地西泮 |
Y=3685 * X-69.4 |
0.997 |
甲硝唑 |
Y=4158 * X-261.1 |
0.998 |
地美硝唑 |
Y=3242 * X-1465.4 |
0.999 |
洛硝哒唑 |
Y=883 * X-134.1 |
0.999 |
羟基甲硝唑 |
Y=912 * X-57.3 |
0.999 |
羟甲基甲硝咪唑 |
Y=915.7 * X+8005.7 |
0.999 |
3.2色谱图分析
由图 1可知: 6 种化合物的MRM峰型还是比较尖锐的,在 6个目标峰处均无杂质峰干扰,分离度高,方法专属性良好。
如下图1.分别是目标化合物的MRM色谱图
The following figure 1. is the MRM chromatogram of the target compound
4.结论
4.1固相萃取净化条件的优化
在样品前处理过程中选择合适的固相萃取柱是实现净化的关键。目前针对地西泮及硝基咪唑类净化而使用的固相萃取柱主要有C18柱、HLB柱和混合阳离子交换柱(MCX) [19]。本试验比较了以上3种固相萃取柱的净化效果和回收率,发现C18固相萃取柱是由于溶液PH较低,化合物普遍回收率偏低且平行性差,过小柱时容易堵塞;选用HLB固相萃取柱时过柱时比较顺畅,样品平行性比较好,但是基质效应比较高,峰形偏胖且回收率都低于60%,而选用MCX柱固相萃取柱时,由于试剂的酸碱性使得对地西泮及5种硝基咪唑硝基咪唑类药物均有良好保留,基质效应比较低,峰形比较好,回收率高于85%,净化效果好。
4.2提取剂的选择
根据文献报道的提取剂主要有甲苯[20]、乙腈[21]、磷酸缓冲液(1 mol/L/)[22]和乙酸乙酯[23]。本试验考察了1mol/L的磷酸缓冲盐[24]、乙腈和乙酸乙酯两种提取剂的提取效率。1 mol/L磷酸缓冲液提取时溶液比较混浊,不容易过小柱且回收率较低,且调PH没有影响;用乙腈提取时溶液比较清澈容易过小柱但是蛋白质,脂肪类比较多,提取液干扰物质比较大;而用乙酸乙酯提取效率高、杂质少,因此本方法选用乙酸乙酯作为提取液。此外还需要注意氮吹的温度不能高于40℃,不然硝基咪唑类的回收率会降低很多[25]。最后洗脱时用3%氨水的乙腈洗脱,使回收率更稳定。因此本试验建立了动物食品中地西泮、甲硝唑、地美硝唑、洛硝哒唑、羟甲基甲硝咪和羟基甲硝唑的高效液相-质谱检测方法。[26]
本试验采用MCX固相萃取柱富集净化,超高效液相色谱-串联质谱技术建立了动物源性食品中地西泮、甲硝唑、地美硝唑、洛硝哒唑、羟甲基甲硝咪和羟基甲硝唑的高效液相-质谱检测方法。该方法前处理简便、线性良好、具有较高的重现性,可满足国家标准检测要求,为相关部门风险监测提供了方法学依据。
参考文献:
[1] Fernndez P,Gonzlez C,Pena MT,et al. A rapidultrasound-assisted dispersive liquid-liquid microextractionfollowed by ultra-performance liquid chromatography for thesimultaneous determination of seven benzodiazepines in humanplasma samples[J].Analytica Chimica Acta,2013,767 ( 5 ) : 88-96.
[2] Ochoa JG,Kilgo WA.The role of benzodiazepines in thetreatment of epilepsy [J].Current Treatment Options inNeurology,2016,18( 4) : 1-11.
[3] Yanl J, Zhang min yu,et al. Determination ofbenzodiazepines in animal feeds by UPLC-ESI MS /MS [J].Journal of Instrumental Analysis,2011,30( 11) : 1301-1305.
[4]朱琳,阮丽萍,刘华良,等.高效液相色谱-串联质谱法测定保健食品中的23 种精神药品[J].色谱,2013,31 ( 7 ) : 709-713.
[5]Gentili A,Perret D,Marchese S. Liquid chromatography-tandem mass spectrometry for performing confirmatory analysis of veterinary drugs in animal-food products[J]. TrAC Trends in Analytical Chemistry, 2005,24( 7) : 704-733
[6] Dousa M. Determination of dimetridazole in animal feeding stuffs and additive premixes by HPLC with UV detection. Interlaboratory comparisontest of the method[J]. Chemistry Listy,2002,94( 5) : 326-330
[7]戴华,李拥军,袁智能等.猪饲料中甲硝唑、二甲硝咪唑药物含量的液相法测定[J].光谱实验室,2004,21( 2) : 313-316
[8] Ho C,Sin DW,Wong K, et al.Determination of dimetridazole and metronidazole in poultry and porcine tissues by gas chromatography-electroncapture negative ionization mass spectrometry[J]. Analytica Chimica Acta,2005,530( 1) : 23-31
[9] Tlgyesi ,Sharma VK,Fekete S,et al.Development of a rapid method for the determination and confirmation of nitroimidazoles in six matricesby fast liquid chromatography-tandem mass spectrometry[J].Journal of Pharmaceutical and Biomedical Analysis, 2012, 64: 40-48
[10] Capitan-Vallvey L,Ariza A,ChecaR,et al. Liquid chromatography-mass spectrometry determination of six 5-nitroimidazoles in animal feedstuff[J].Chromatographia,2007,65( 5 /6) : 283-290
[11] Hurtaud-Pessel D,Delépine B,Laurentie M. Determination of four nitroimidazole residues in poultry meat by liquid chromatography-mass spectrometry[J]. Journal of Chromatography A,2000,882( 1) : 89-98
[12] Mendoza-Lpezd AM,Gondlezalond,et al.Occurrence of drugs of abuse and benzodiazepines in river watersfrom the Madrid Region ( Central Spain) [J].Chemosphere, 2014,95( 1) : 247-255.
[13] FickJ, Brodnt, Heynenm ,et al.Screening ofbenzodiazepines in thirty European rivers[J].Chemosphere, 2017,176( 2) : 324-332.
[14] Gerrity DW, BenottimJ,Reckhow DA,et al.Pharmaceuticals and endocrine-disrupting compounds in drinkingwater[J]. Environmental Science &Technology,2011,43( 3) : 597-603.
[15] 白晓慧,贺兰喜,王宝贞. 常规饮用水净化技术面临的挑战及对策[J]. 水科学进展,2002,13( 1) : 122-127.
[16] Odsbui,Skurtveiu S,Selmerr,et al Prenatal exposureto anxiolytics and hypnotics and language competence at 3 yearsof age.[J]. European Journal of Clinical Pharmacology,2015,71( 3) : 283-291.
[17] 李想,蒋可心.饮用水中苯二氮卓类药物残留研究现状[J].中国初级卫生保健,2010,24( 7) : 60-62.
[18] 严爱花,李贤良,郗存显,等. 固相萃取-液相色谱-串联质谱法同时检测猪肉中18 种苯二氮卓类药物残留量[J]. 食品与发酵工业,2013,39( 4) : 173-179.
[19] Rahmin-Nasrabadi M, Khoshroo A, Mazloumardakanim. Electrochemical determination of diazepam inreal samples based on fullerene-functionalized carbon nanotubes /ionic liquid nanocomposite [ J]. Sensors & Actuators B
Chemical,2017,240( 8) : 125-131.
[20] Kim J, Lee S,et al. Validation of a simultaneousanalytical method for the detection of 27 benzodiazepines andmetabolites and zolpidem in hair using LC-MS /MS and itsapplication to human and rat hair[J]. Journal of ChromatographyB,2011,879( 13 /14) : 878-886.
[21]中华人民共和国农业部.中华人民共和国农业部公告第176号[A /OL].( 2011-04-22)[2017-07-15].http: / /www.moa. gov. cn / zwllm / tzgg / gg /201104 / t20110422_1976307.htm.
[22]国家食品药品监督管理总局. 保健食品中可能非法添加的物质名单( 第一批)[A/OL]. ( 2012-12-14) [2017-07-15].http: / /www. sda. gov. cn /WS01 /CL1162 /76614. html.
[23] Huchenq A, Marquat M, Weiby M, et al. Glutamateexcretion triggering mechanism: A reinvestigation of thesurfactant-induced modification of cell lipids[J]. AnnMicrobiol (inst Pasteur), 1984, 135B(1): 53-67.
[24] Ebune A, Asheh S, Duvnjak Z. Effects of phosphate, surfactants and glucose on phytase production andhydrolysis of phytic acid in canolameal by Aspergillusficuum during solid-state fermentation [J]. Biores Technol, 1995, 54(3): 241-247.
[25] Mohan RR, Gopal P, Seenayya G. Enhanced productionof thermostable β-amylase and pullulanase in the presenceof surfactants by Clostridium hermosulfurogenes SV2[J]. Proc Biochem, 1999, 34: 87-92.
[26] Cohen SN, Chang acy, Leslie Hsu. Nonchromosomalantibiotic resistance inbacteria:genetictransformation ofEscherichia coli by R-factor DNA[J]. Proc Nat Acad Sci. USA, 1972, 69(8): 2110-2114.