氧氟沙星C-3稠杂环不饱和酮的合成及抗肿瘤活性


氧氟沙星C-3稠杂环不饱和酮的合成及抗肿瘤活性

张呈霞1,王蕊2*黄文龙3胡国强1*

(1. 河南大学药物物研究所,河南 开封,4750012. 河南大学护理与健康学院,河南 开封;3中国药科大学 新药研究中心, 江苏 南京 210009)

摘要: 目的 发展氟喹诺酮由抗菌活性向抗肿瘤活性转化的有效结构修饰策略。方法 基于药效团和骨架的迁越药物设计原理,用不饱和酮稠合修饰的均三唑杂环作为C-3羧基的等排体,设计了C-3噻二唑并均三唑不饱和酮目标化合物(6a~6l)。用元素分析和光谱数据确证化合物的结构,MTT方法评价了体外对SMMC-7721Capan-1HL60 3种癌细胞株的增值活性。结果  合成了12个新结构的C-稠杂环不饱和酮化合物,体外抗肿瘤活性显著强于母体化合物1,含氟苯基和邻甲氧苯基化合物的活性与对照抗肿瘤药阿霉素相当。结论 噻二唑并均三唑不饱和酮骨架替代氟喹诺酮C-3羧基有利于提高其抗肿瘤活性。

关键词氟喹诺酮均三唑;噻二唑;噻二唑并均三唑;不饱和酮;抗肿瘤活性

Synthesis and Antitumor Activity of Ofloxacoin C-3 thiazolotriazole Unsaturated Ketone Derivatives

ZHANG Chen-xia1, WANG Rui2*, HUANG Wen-Long2, HU Guo-qiang1*

(1. Institute of Materia Media, Henan University, Kaifeng 475001, China; 2. College of Nursing and Health, Henan University, Kaifeng 475001, China; 3. Center of  Drug Discovery, China Pharmaceutical University, Nanjing 210009, China)

ABSTRACTOBJECTIVE  To discover an efficient strategy for a conversion of the antibacterial activity into an antitumor activity. METHODS  Drug design principles based on pharmacophore and scaffold hopping, fluoroquinolone C-3 thiazolotriazole unsaturated ketones (6a6l) were designed with a unsaturated ketone fused s-triazole as an isostere from ofloxacin (1).  The structures were characterized by elemental analysis and spectral data, and the in vitro antitumor activity against the tested tumor cell lines was evaluated by a MTT assay. RESULTS Twelve new title compounds were synthesized, and exhibited more significant potency than ofloxacin. The compounds with fluorophenyl or o-methoxyphenyl displayed comparable activity to comparasion doxorubicin. CONCLUSION A fused heterocyclic unsaturated ketone skeleton as an isostere of the C-3carboxylic acid group appears to an alternative route for further design of lead antitumor fluoroquinolone.

KEY WORDS: fluoroquinolone; s-triazole; thiazole; thiazolotriazole; unsaturated ketone; antitumor activity

药物研发起源于先导物的发现和优化,而基于机制或(和)结构的药效团和骨架迁越药物分子设计是发现新先导物的有效途径[1]。拓扑异构酶不仅是抗菌氟喹诺酮药物的作用靶标,也是抗肿瘤药物的重要作用靶点[2]。与此同时,鉴于氟喹诺酮的药效骨架—喹啉环也是现有药物及众多天然生物碱的优势药效团骨架,因此,通过结构修饰的策略可将氟喹诺酮的抗菌活性转化为抗肿瘤活性[3],并发现由均三唑杂环构建的噻二唑并均三唑稠杂环[4]及噻唑ab-不饱和酮修饰的酰胺结构[5]作为C-3羧基的生物等排体均可提高其抗肿瘤活性,这为C-3羧基等排体的结构优化提供了新思路。一方面,考虑到ab-不饱和酮结构单元不但是构建药物分子的重要有机合成子,也是靶向抗肿瘤药物,如小分子靶向酪氨酸激酶抑制剂舒尼替尼[6]和许多天然有效成分如查尔酮和黄酮类的核心骨架[7]。然而,用ab-不饱和酮结构作为C-3等排体均三唑环的修饰基团研究较少。另一方面,均三唑及噻二唑杂环作为基本的药效团骨架在结构多样的候选药物分子构建上备受关注 [8],为实现均三唑、噻二唑、ab-不饱和酮三者的有效拼合,用ab-不饱和酮对均三唑环进行稠合修饰,进而构建了“噻二唑并均三唑ab-不饱和酮”骨架,以此作为氧氟沙星C-3羧基的等排体,设计合成了氧氟沙星C-3噻二唑并均三唑ab-不饱和酮目标化合物6,并评价了其体外的抗肿瘤活性(表 1)。目标物的合成路线见图1

1 仪器与试剂

WK-1B数字熔点仪上海申光仪器有限公司); AM-400型核磁共振仪,Esquire LC型质谱仪德国Bruker公司);PE2400-Ⅱ元素分析仪美国PE公司);酶标仪为RAD(美国 BIO公司)实验所用人肝癌细胞株SMMC-7721、人胰腺癌细胞株Capan-1人白血病细胞株HL60均购于中科院上海细胞生物研究所。

商业购买的氧氟沙星(1)经肼解反应制得氧氟沙星酰肼(2)、与硫氰化钾缩合得到C-3酰氨基硫脲(3)、然后在氢氧化钠水溶液中环合得到中间体氧氟沙星C-3均三唑硫醇(4)[4], 其他试剂市销分析纯。

 

1 目标化合物氧氟沙星C-3 噻二唑并均三唑不饱和酮6a~6l的合成

R: H (a); 4-CH3 (b); 3-CH3 (c); 4-OCH3 (d); 2-OCH3 (e); 3,4-OCH2O (f); 3,4-(OCH3)2 (g); 3,4,5-(OCH3)3 (h); 4-F (i); 3-F (j); 4-Cl (k); 4-Br (l)

Fig. 1  Synthetic route of ofloxacin C-3 thiazolo[3,2-b][1,2,4]triazole unsaturated ketones 6a~6l 

 

2 实验方法和结果

2.1  6--7-(4-甲基-哌嗪-)-8,1-(1,3-氧丙基)-3-[5-氰甲硫基-4H-1,2,4-三唑-3-]-喹啉-4(1H)-(5)的合成通法

氧氟沙星C-3均三唑硫醇4 (20.0 g, 48.0 mmol)悬浮于氢氧化钾(3.2 g, 58.0 mmol)无水乙醇溶液(1000 mL)中,加热溶解物料,冰浴下滴加氯乙腈(4.4 g, 58.0 mmol), 常温搅拌反应10 h,然后搅拌回流3 h,放置过夜。过滤,固体用水洗至中性,干燥。用无水乙醇重结晶,干燥,得16.7 g淡黄色结晶物5收率 76%mp218~220℃;1H NMR (DMSO-d6) d11.46 (s, 1H, NH), 8.86 (s, 1H, 2-H), 7.68 (d, J=13.0 Hz, 1H, 5-H), 4.82~4.53 (m, 3H, OCH2CHN), 4.16 (s, 2H, CH2CN), 3.47~3.16 (m, 8H, piperazine-H), 2.30 (s, 3H, N-CH3), 1.42 (d, J=6.2 Hz, 3H, CH3); ESI-MS(m/z): 456[M+H]+; 计算值:444.61

 

2.2  6--7-(4-甲基-哌嗪-1-)-8,1-(1,3-氧丙基)-3-[5-芳甲叉基-噻二唑[3,2-b][1,2,4]三唑-6(5H)--2-]-喹啉-4(1H)-(6a~6l)的合成通法

中间体5 (2.0 g, 4.0 mmol)(取代)苯甲醛(5.0 mmol)加入到冰乙酸(50 mL)中,滴加浓硫酸(1.0 mL),混合反应物搅拌回流反应24 h。减压蒸除溶剂,加去离子水50mL和适量的活性炭,回流脱色1 h。热过滤,用氨水碱化pH 9.0~10.0。放置析出固体,过滤,用去离子水洗涤,干燥。无水乙醇-DMF混合溶剂重结晶,得目标化合物6a~6l

6a: 产率 67.2%mp 226~228℃。1H NMR (DMSO-d6) d: 8.88 (s, 1H, 2-H), 8.14 (1H, s, Ar-CH), 7.84~7.42 (m, 6H, Ph-H5-H), 4.85~4.56 (m, 3H, OCH2CHN), 3.53~2.64 (m, 8H, piperazine-H), 2.34 (3H, s, N-CH3), 1.45 (d, J=6.0 Hz, 3H, CH3); ESI-MS (m/z): 545 [M+H]+; 计算值:527.58。元素分析值C28H25FN6O3SC 61.75, H 4.63, N 15.43; 实验值 C 61.96, H 4.48, N 15.66

6b: 产率 58.2%mp 217~219℃。1H NMR (DMSO-d6) d: 8.87 (s, 1H, 2-H), 8.12 (1H, s, Ar-CH), 7.82~7.45 (m, 5H, Ph-H5-H), 4.86~4.52 (m, 3H, OCH2CHN), 3.55~2.63 (m, 8H, piperazine-H), 2.34 (3H, s, N-CH3), 2.26 (3H, s, Ph-CH3), 1.43 (d, J=6.0 Hz, 3H, CH3); ESI-MS (m/z): 559 [M+H]+; 计算值:558.64。元素分析值C29H27FN6O3SC 62.35, H 4.87, N 15.04; 实验值 C 62.57, H 4.66, N 15.27

6c: 产率 46.5%mp 204~206℃。1H NMR (DMSO-d6) d: 8.89 (s, 1H, 2-H), 8.15 (1H, s, Ar-CH), 7.87~7.46 (m, 5H, Ph-H5-H), 4.87~4.54 (m, 3H, OCH2CHN), 3.56~2.64 (m, 8H, piperazine-H), 2.35 (3H, s, N-CH3), 2.26 (3H, s, Ph-CH3), 1.45 (d, J=6.0 Hz, 3H, CH3); ESI-MS (m/z): 559 [M+H]+; 计算值:558.64。元素分析值C29H27FN6O3SC 62.35, H 4.87, N 15.04; 实验值 C 62.53, H 4.64, N 15.18

6d: 产率 70.3%mp 231~233℃。1H NMR (DMSO-d6) d: 8.92 (s, 1H, 2-H), 8.17 (1H, s, Ar-CH), 7.86~7.58 (m, 5H, Ph-H5-H), 4.88~4.64 (m, 3H, OCH2CHN), 3.86 (m, 3H, OCH3), 3.57~2.65 (m, 8H, piperazine-H), 2.36 (3H, s, N-CH3), 1.47 (d, J=6.0 Hz, 3H, CH3); ESI-MS (m/z): 575 [M+H]+; 计算值:574.64。元素分析值C29H27FN6O4SC 60.62, H 4.74, N 14.62; 实验值 C 60.87, H 4.53, N 14.86

6e: 产率 50.6%mp 215~217℃。1H NMR (DMSO-d6) d: 8.94 (s, 1H, 2-H), 8.18 (1H, s, Ar-CH), 7.92~7.63 (m, 5H, Ph-H5-H), 4.92~4.68 (m, 3H, OCH2CHN), 3.87 (m, 3H, OCH3), 3.58~2.66 (m, 8H, piperazine-H), 2.37 (3H, s, N-CH3), 1.46 (d, J=6.0 Hz, 3H, CH3); ESI-MS (m/z): 575 [M+H]+; 计算值:574.64。元素分析值C29H27FN6O4SC 60.62, H 4.74, N 14.62; 实验值 C 60.82, H 4.38, N 14.79

6f: 产率 78.3%mp 236~238℃。1H NMR (DMSO-d6) d: 8.96 (s, 1H, 2-H), 8.22 (1H, s, Ar-CH), 8.06~7.68 (m, 4H, Ph-H5-H), 6.28 (s, 2H, OCH2O), 4.94~4.72 (m, 3H, OCH2CHN), 3.62~2.68 (m, 8H, piperazine-H), 2.36 (3H, s, N-CH3), 1.48 (d, J=6.0 Hz, 3H, CH3); ESI-MS (m/z): 589 [M+H]+; 计算值:588.62。元素分析值C29H25FN6O5SC 59.18, H 4.28, N 14.28; 实验值 C 59.37, H 4.06, N 14.53

6g: 产率 52.6%mp 223~225℃。1H NMR (DMSO-d6) d: 8.93 (s, 1H, 2-H), 8.20 (1H, s, Ar-CH), 7.98~7.65 (m, 4H, Ph-H5-H), 3.86, 3.88 (2s, 6H, 2OCH3), 4.92~4.68 (m, 3H, OCH2CHN), 3.60~2.65 (m, 8H, piperazine-H), 2.35 (3H, s, N-CH3), 1.46 (d, J=6.0 Hz, 3H, CH3); ESI-MS (m/z): 605 [M+H]+; 计算值:604.67。元素分析值C30H29FN6O5SC 59.59, H 4.83, N 13.90; 实验值 C 59.82, H 4.63, N 14.15

6h: 产率 56.2%mp 218~220℃。1H NMR (DMSO-d6) d: 8.96 (s, 1H, 2-H), 8.25 (1H, s, Ar-CH), 8.12~7.68 (m, 3H, Ph-H5-H), 3.87, 3.92 (2s, 9H, 3OCH3), 4.94~4.74 (m, 3H, OCH2CHN), 3.63~2.67 (m, 8H, piperazine-H), 2.36 (3H, s, N-CH3), 1.48 (d, J=6.0 Hz, 3H, CH3); ESI-MS (m/z): 635 [M+H]+; 计算值:634.69。元素分析值C31H31FN6O6SC 58.67, H 4.92, N 13.24; 实验值 C 58.89, H 4.68, N 13.46

6i: 产率 73.6%mp 232~234℃。1H NMR (DMSO-d6) d: 9.14 (s, 1H, 2-H), 8.27 (1H, s, Ar-CH), 8.16~7.78 (m, 5H, Ph-H5-H), 4.97~4.78 (m, 3H, OCH2CHN), 3.67~2.68 (m, 8H, piperazine-H), 2.38 (3H, s, N-CH3), 1.52 (d, J=6.0 Hz, 3H, CH3); ESI-MS (m/z): 563 [M+H]+; 计算值:562.60。元素分析值C28H24F2N6O3SC 59.78, H 4.30, N 14.94; 实验值 C 60.04, H 4.42, N 15.17

6j: 产率 52.8%mp 214~216℃。1H NMR (DMSO-d6) d: 9.13 (s, 1H, 2-H), 8.25 (1H, s, Ar-CH), 8.14~7.72 (m, 5H, Ph-H5-H), 4.96~4.75 (m, 3H, OCH2CHN), 3.66~2.65 (m, 8H, piperazine-H), 2.37(3H, s, N-CH3), 1.53 (d, J=6.0 Hz, 3H, CH3); ESI-MS (m/z): 563 [M+H]+; 计算值:562.60。元素分析值C28H24F2N6O3SC 59.78, H 4.30, N 14.94; 实验值 C 59.96, H 4.14, N 15.20

6k: 产率 67.5%mp 216~218℃。1H NMR (DMSO-d6) d: 9.07 (s, 1H, 2-H), 8.23 (1H, s, Ar-CH), 8.12~7.68 (m, 5H, Ph-H5-H), 4.95~4.74 (m, 3H, OCH2CHN), 3.66~2.67 (m, 8H, piperazine-H), 2.36 (3H, s, N-CH3), 1.52 (d, J=6.0 Hz, 3H, CH3); ESI-MS (m/z): 579 [M+H]+ (35Cl); 计算值:579.06。元素分析值C28H24ClFN6O3SC 58.08, H 4.18, N 14.51; 实验值 C 58.35, H 4.41, N 14.74

6l: 产率 70.6%mp 225~227℃。1H NMR (DMSO-d6) d: 8.96 (s, 1H, 2-H), 8.18 (1H, s, Ar-CH), 8.05~7.63 (m, 5H, Ph-H5-H), 4.92~4.70 (m, 3H, OCH2CHN), 3.65~2.66 (m, 8H, piperazine-H), 2.36 (3H, s, N-CH3), 1.52 (d, J=6.0 Hz, 3H, CH3); ESI-MS (m/z): 623, 625 [M+H]+(79Br, 81Br); 计算值:623.51。元素分析值C28H24BrFN6O3SC 53.94, H 3.88, N 13.48; 实验值 C 54.17, H 4.12, N 13.73

2.3 抗肿瘤活性评价

对合成的12新C-3噻二唑并均三唑不饱和酮目标化合物 (6a~6l)和对照蒽醌类抗肿瘤药阿霉素(DOX)及母体氧氟沙星(1)DMSO配成1.0´10-2 mol∙L-1浓度的储备液, 按文献[4]的方法测定对人肝癌细胞株SMMC-7721、人胰腺癌株Capan-1和人白血病细胞株HL60的半数抑制浓度(IC50), 结果见1

体外抗增殖活性结果表明,12个目标化合物对3种试验肿瘤细胞株的IC50均低于30.0mmol/L, 显著强于对照母体氧氟沙星(IC50>100mmol/L)的活性。同时,构效关系表明,构建的稠杂环不饱和酮双键的芳香苯环的取代基增大可导致活性降低,但苯环被F原子取代或邻位被甲氧基取代的化合物其活性高于其它取代基的活性,如氟苯基或邻甲氧苯化合物对Capan-1细胞IC50与对照抗肿瘤药阿霉素相当,具有潜在的研究的价值。初步的药理筛选结果表明,氟喹诺酮C-3羧基并非是抗肿瘤活性所必要的药效团,用稠杂环不饱和酮替代有利于提高其抗肿瘤活性,为抗肿瘤氟喹诺化合物分子的设计与构建提供新思路。

 

 

 

 

 

 

 

 

 

 

 

1  目标化合物(6a~6l)SMMC-7721, Capan-1HL60 肿瘤细胞的抗增值活性

Table 1  Anti-cell proliferative activity of the title compounds (6a6l) against SMMC-7721, Capan-1 and HL60 tumor cells. n=3, x±s

      Compd.

IC50/ (μmol/L)

SMMC-7721

Capan-1

HL60

6a

8.7±0.6

6.8±0.7

21.7±2.3

6b

13.7±1.5

10.3±1.2

27.6±2.5

6c

12.6±1.3

8.6±1.0

16.3±1.8

6d

13.8±1.6

8.2±0.7

12.6±1.7

6e

4.3±0.5

2.6±0.4

11.7±1.0

6f

12.3±1.4

10.3±1.5

18.2±1.3

6g

14.8±1.5

12.0±1.3

21.4±2.6

6h

20.8±2.3

13.8±1.6

26.7±2.0

6i

3.5±0.4

2.2±0.3

10.6±1.3

6j

2.8±0.5

1.4±0.3

6.8±1.2

6k

15.7±1.2

13.8±1.6

15.7±1.4

6l

21.8±2.3

15.7±1.3

28.6±2.7

Doxorubicin

2.6±0.3

3.5±0.5

1.8±0.3

ofloxacin

>100

>100

>100

 

 

REFERENCES

[1]  HU Y, STUMPFE D, BAJORATH J. Recent advances in scaffold hopping [J]. J Med Chem, 2017, 60 (4): 1238–1246.

[2]  HU W, HUANG X S, WU J F, et al. Discovery of novel topoisomerase II inhibitors by medicinal chemistry approaches [J]. J Med Chem, 2018, 61 (20): 8947–8980.

[3]  GAO L Z, LI T, XIE Y S, et al. Synthesis and antitumor activity of fluoroquinolon-3-yl s-triazole sulfanylacetylhydrazones and s-Triazole hydrazone derivatives (V) [J]. Chin Pharm J (中国药学杂志). 2015, 50 (6): 545549.

[4]  WU S M, YAN Q, NI LL, et al. Synthesis and antitumor activity of fluoroquinolone C-3 fused heterocyclic thiazolo[3,2-b][1,2,4]triazole derivatives (VI) [J]. Chin Pharm J (中国药学杂志). 2016, 51 (5): 353357.

[5]  Yang T, Wang XM, Wang R, et al. Synthesis and antitumor activity evaluation of C-3 (rhodanine unsaturated ketone) amides as ofloxacin derivatives [J]. Chin Pharm J (中国药学杂志). 2017, 53 (3): 174177.

[6] SONG M. Progress in discovery of KIF5B-RET kinase inhibitors for the treatment of non-small-cell lung cancer [J]. J Med Chem, 2015, 58 (9): 3672–3681.

[7] ZHUANG C L, ZHANG W, SHENG C Q, et al. Chalcone: A privileged structure in medicinal chemistry. Chem Rev, 2017, 117 (12): 7762–7810.

[8] MAJUMDAR P, PATI A, PATRA M, et al. Acid hydrazides, potent reagents for synthesis of oxygen-, nitrogen-, and/or sulfur-containing heterocyclic rings [J]. Chem Rev, 2014, 114 (5): 2942–2977.

   

微信二维码
扫码添加微信咨询
QQ客服:1663286777
电话:137-1883-9017
收到信息将及时回复