PKM2和Notch1在结直肠癌中的研究进展及相互作用

PKM2和Notch1在结直肠癌中的研究进展及相互作用

王佳 杜文龙(共同第一作者) 郭渊先 尹兰宁(通讯作者)

王佳(兰州大学第二医院普外六科,甘肃 兰州  730000)

杜文龙(兰州大学第二医院普外六科,甘肃 兰州  730000)

郭渊先(兰州大学第二医院普外六科,甘肃 兰州  730000)

尹兰宁#(兰州大学第二医院普外六科,甘肃 兰州  730000)

基金名称:甘肃省自然科学基金(1606RJZA198)

【摘要】结直肠癌是全世界最常见的恶性肿瘤之一,因为其早期缺乏特异性症状,多数患者就诊时已出现远处转移,总体治疗效果相对较差,严重威胁着人类的健康和寿命。随着对恶性肿瘤研究的不断深入,发现肿瘤细胞能量代谢和信号通路异常是恶性肿瘤的特质性改变。研究表明,PKM2及Notch1在结直肠癌组织中高表达,且与结直肠癌的发生、发展有一定的关系,其表达水平亦与肿瘤的化、放疗效果和抵抗性有关,严重影响患者预后,是目前肿瘤治疗和研究的关键靶点。然而两者之间的相关性,目前尚不明确。探讨两者之间的关系,为结直肠癌的靶向治疗提供一个新的方向。

【关键词】 结直肠癌   PKM2    Notch1   Wnt/β-catenin

【背景】结直肠癌,又称为大肠癌,是全世界最常见的恶性肿瘤之一,其发病率占世界恶性肿瘤的第三位,严重威胁着人类的健康[1]。目前全世界结直肠癌患者已超过1,000,000人,并且每年超过500,000人死于该病[2]。在近几十年来,中国结直肠癌发病率不断攀升,可能与人们生活方式的改变、寿命的延长以及结直肠癌的筛查系统不完善有关[3, 4]。由于其常起病隐匿,早期无明显的临床表现,多数患者确诊时已发展至中晚期,大约50%~60%的患者会因发生远处转移[5] 继而失去手术机会,然而对于对放化疗的抵抗,致使其总体预后欠佳。因此,积极研究结直肠癌的发生、发展及转移机制,对于早期诊断及治疗结直肠癌尤为重要。但结直肠癌的发生、发展是一个复杂过程,涉及多基因、多步骤,具体机制目前尚不明确,要了解结直肠癌发生、发展的分子机制,确立防治靶点,寻求新的干预策略以提高对结直肠癌的防治任重而道远。大量的实验数据表明,PKM2、Notch1信号通路对于结直肠癌的发生、发展及远处转移起着重要作用[6-9],但其两者之间是否有相互作用,目前尚不明确。本文就PKM2、Notch1信号通路在结直肠癌中的研究进展及相互作用作一综述。

1.PKM2与结直肠癌的关系

1.1.PKM2简介

丙酮酸激酶(pyruvate kinase ,PK),是糖酵解过程中的一个关键酶,其作用主要是通过催化高能磷酸基从磷酸烯醇式丙酮酸到ADP的转移,并产生丙酮酸和ATP,在细胞能量代谢过程中起重要作用。丙酮酸激酶有四种同工酶(PKL、PKR、PKM1、PKM2),分别由两种基因(L、M)编码,其中L基因编码PKL及PKR,而M基因编码PKM1及PKM2型同工酶,他们分别在特定的组织中表达。PKM2 主要表达于胚胎细胞、成体干细胞及增生活跃的组织细胞中,然而随着胚胎的发育,其逐渐被其他三种同工酶所代替。但在肿瘤发生过程中 PKM2表达上升并取代组织中原PK同工酶类型[10]。PKM2有单体、二聚体、四聚体等三种形式,具有丙酮酸激酶和蛋白激酶两种活性,不仅在糖酵解中发挥作用,而且在细胞核中起蛋白激酶或转录激活因子的作用[11]。其中以二聚体形式存在的M2PK几乎在所有肿瘤组织都有表达,因其与磷酸化丙酮酸低亲和力,导致磷酸烯醇类物质的堆积,利于肿瘤细胞进行有氧糖酵解,故又称为肿瘤型PKM2[12]

1.2.PKM2与肿瘤代谢

代谢异常是肿瘤细胞的一个共有特点,而其中有氧糖酵解增加是肿瘤细胞发生的最常见的代谢异常。所谓有氧糖酵解,是指即使在氧气充足的情况下,肿瘤细胞也倾向于利用糖酵解供能,表现为葡萄糖消耗和乳酸生成同时增加,此过程又称为Warburg效应[13]。肿瘤细胞之所以选择如此低效的供能方式,主要有以下原因,不但可以提供能量,而且大量的中间产物有助于满足肿瘤细胞的快速增殖[14];乳酸生成的增加一方面有利于逃避免疫监测,另一方面酸化肿瘤微环境促进远处转移[15]。另外,关闭有氧氧化通路,避免产生自由基,从而逃避细胞凋亡。

        PKM2作为糖酵解的关键酶,在维持肿瘤细胞代谢平衡中起重要作用,通过在高活性的四聚体与低活性的二聚体之间转换,决定葡萄糖分解为乳酸并产生能量,还是导致糖酵解中间代谢产物积累,促进肿瘤增殖[16]。这一过程受多因素调节,其中FBP(1,6 fructose bisphosphate, 1,6-二磷酸果糖)是最重要的调节因子。PKM2也可以通过其105位的酪氨酸磷酸化,改变PKM2与FBP的结合位点,使其解离,消除FBP对PKM2的变构效应[17]。自噬相关蛋白Atg7是自噬小体的关键组成部分,可通过阻断PKM2与上游激酶FGFR1的结合,抑制PKM2活性,从而抑制Warburg效应[18]

1.3.PKM2与肿瘤细胞核内转录

许多研究表明,PKM2可进入细胞核参与调控基因表达。如在低氧刺激下,PKM2与HIF-1α 转录因子相互作用,反式调节PDK1、GLUT1、 LDHA 和PKM2自身的表达,促进肿瘤细胞代谢[19]。表皮生长因子受体(epidermal growth factor receptor ,EGFR)的激活,可诱导磷酸化PKM2通过转位进入细胞核,继而激活β-catenin(连环蛋白)靶基因c-Myc的表达,促进肿瘤增殖[20, 21]PKM2还介导癌细胞在TGF-β和EGF激活时的上皮间充质转化(epithelial-mesenchymal transition ,EMT),从而抑制E-cadherin转录[22]PKM2还作为蛋白激酶,磷酸化组蛋白H3,调控基因表达[23]。由上可知,细胞核内的PKM2也可促进肿瘤发生及增殖。

1.4.PKM2促进肿瘤细胞外泌体分泌

肿瘤细胞通过释放大量含有外泌体、微囊泡(MVs)或微粒子以及凋亡体的外囊泡来与周围微环境进行物质交换和信息交流,这些物质在促进肿瘤生长和进展方面起着关键作用[24, 25]。外泌体中所包含的脂质如胆固醇、甘油二酯、磷脂、鞘脂等,及一些具有生物活性的脂质分子如前列腺素等[26],不仅参与维持外泌体的形态,还可作为信号分子参与调节生物学过程,如免疫监视、炎症及肿瘤发育等[27-29]。外泌体可通过将 Notch配体转移到其他内皮细胞,并与其细胞膜融合,从而抑制Notch信号通路[30]。外泌体也可通过传递其表面携带的Wnt蛋白来调节靶细胞β-catenin依赖性基因表达[31]。此外,最新研究指出,外泌体中所包含的miR-638在结直肠癌中显著下降,是影响结肠癌预后的因素{G, 2017 #1542}[32]

突触相关蛋白23(synaptosome-associated protein 23,SNAP23),在肿瘤细胞中可作为PKM2的底物,控制分泌颗粒或者含有外泌体的多泡体的对接以及释放。在肿瘤细胞外泌体分泌过程中,低活性的二聚体PKM2磷酸化后不仅将肿瘤细胞的代谢从氧化磷酸化转化为有氧糖酵解,而且通过直接磷酸化SNAP23促进肿瘤细胞外泌体的分泌[33]。外泌体的释放需要高水平的有氧糖酵解,因此,在肿瘤细胞中,二聚体形式的PKM2对外泌体的释放有关键作用[33]

1.5.PKM2与lncRNAs

研究发现,98%的人类基因组转录是具有有限或没有蛋白质编码能力的非编码RNAs(ncRNAs),长非编码RNAs(lncRNAs)是长度超过200 nt,占ncRNAs家族的大部分。而越来越多的研究表明,lncRNAs在包括结直肠癌在内的人类恶性肿瘤的发生发展中起着关键作用[34-36]。已经报道,多种lncRNAs成员,包括LINC00152、UCA1、  CCAL和 PVT1在结直肠癌中异常表达,并调节其发生和进展,且前两者可诱导产生耐药[37-40]CCAL主要通过激活Wnt/β-catenin通路,促进结直肠癌增殖[40]FEZF1-AS1,一种最新发现的在结直肠癌中过度表达的lncRNAs,可抑制结直肠癌细胞凋亡[41, 42]PKM2作为结直肠中STAT3信号通路中的调节器,是FEZF1-AS1下游的关键靶标,FEZF1-AS1可以增加PKM2的稳定性。FEZF1-AS1的过表达,不但可以增加细胞质中PKM2的表达,促进有氧糖酵解,诱发结直肠癌,还可以提高细胞核中PKM2的活性,激活STAT3,促进结直肠癌的发展[43]

1.6.PKM2可用于直肠癌的辅助诊断

肿瘤细胞的坏死以及转移,可致使其中所含的肿瘤 PKM2被释放进入血液系统,而某些消化道肿瘤细胞中的肿瘤 PKM2也可通过粪便排出。因此,检测血清、粪便中PKM2的含量有助于肿瘤的辅助诊断。近年来的研究显示,肿瘤型PKM2的检测对胃肠道肿瘤的诊断灵敏度高于传统的肿瘤标志物(CEA、CA199、CA724)[44-46]。一项荟萃分析数据表明粪便肿瘤型PKM2水平检测对结直肠癌诊断的特异度为84.0%,灵敏度为80.0%;血清肿瘤型PKM2平检测的特异度为76.0%,灵敏度为66.0%[47]。因此肿瘤型PKM2在结直肠癌早期诊断中具有明显的辅助作用,且粪便肿瘤型PKM2,因为其非侵入性、方便检测,可作为结直肠癌常规辅助诊断。

1.7.PKM2与结直肠癌的治疗

目前,结直肠癌的治疗仍然是以手术切除为主,其次辅以放疗及化疗[48],但由于2/3的患者在术后会复发或远处转移[49], 且多数患者在就诊时已发展至晚期[50],被迫需要进行放化疗,但放化疗常常因为抗辐射及耐药的发生而失败,因此结直肠癌的治疗效果及预后均很差。由于PKM2在多种肿瘤组织中呈高表达,且其在维持肿瘤细胞能量代谢及合成原料供应平衡中的重要作用,因而寻找以PKM2为靶点的干预药物,为结直肠癌的治疗提供了新的研究方向。

多项研究表明,抑制PKM2,使得ATP合成下降,进而导致细胞内化疗药物积累,从而提高化疗效果。例如,利用shRNA抑制PKM2的表达,同时予以顺铂或多西他赛处理肿瘤细胞,结果发现抑制PKM2可以明显提高化疗药物对肿瘤细胞的杀伤力[51, 52]PKM2的抑制,也可导致5-FU在结直肠癌细胞内排出减慢,提升治疗效果[53]。抑制核PKM2功能,或阻断PKM2/STAT3通路,可以提高结直肠癌细胞对吉非替尼的敏感性[54]。此外,PKM2与 酪氨酸激酶受体EGFR相互作用可促进抗辐射,靶向核内PKM2与EGFR复合物,可能提升放疗敏感性[55]。二甲双胍,一种降糖药,可抑制葡萄糖的吸收,已被证明可以降低糖尿病患者恶性肿瘤发病率[56],并显著降低胃癌、肝癌、肺癌、结直肠癌、食管癌的发生率及相关死亡率[57]。虽然已被证明在胃癌中,二甲双胍通过抑制HIF1α/PKM2通路抑制胃癌生长[58], 但二甲双胍抑制结直肠癌生长机制尚不明确。

2.Notch1与结直肠癌的关系

2.1.Notch信号通路简介

Notch信号通路广泛存在于脊椎和无脊椎动物体内,是一条维持细胞功能正常运行的信号转导通路,对促进胚胎及成年个体的发育和维持内环境稳定至关重要。Notch信号通路由Notch受体、Notch配体和转录因子CSL三部分组成。Notch受体及配体均为跨膜蛋白。哺乳动物有4种Notch受体,即Notchl-4。Notch配体又称为DSL蛋白,分别为DLLl、3、4及Jaggedl、2,共5种。CSL是一种DNA结合蛋白,是由3种转录因子CBF-1、Suppressor of Hairless、Lag-l的缩写,能识别并结合特定的DNA序列。其结构包含胞外域( NEC )、膜域(NTM)和胞内域NIC)三部分,其NIC 转录后修饰可调节 Notch 活性。大量研究表明Notch 1在结直肠癌中是过表达,对结直肠癌的发生、发展起促进作用,是结直肠癌潜在的致癌基因。 

2.2.Notch1的活性形式NICD1

邻近细胞的配体对信号接收细胞的Notch受体施加的应力对于Notch信号的激活至关重要,并诱导Notch受体发生3次蛋白水解裂解事件,致使其胞内域NICD片段释放[59]。释放的NICD继而进入细胞核,与共转录因子(RBPJ/CSL)、Mastermind-Like (MAML)、组蛋白乙酰转移酶p300/CBP结合诱导靶基因转录编码HES和HEY等转录因子,这些转录因子促进下游基因表达,从而促进细胞增殖,抑制细胞分化[60-62]。由于在结直肠癌中Notch1高表达,而Notch1在Notch信号通路激活过程中,起主导作用,故其活性形式NICD1在结直肠癌中的作用就显得尤为重要[63, 64]。 

2.3.Notch1与自噬

自噬是真核生物中进化保守的对细胞内物质进行周转的重要过程,同时也是一个自我吞噬的过程。自噬可以逐渐吞灭细胞内容物,如受损的蛋白质或细胞器,然后与溶酶体融合形成自噬体,降解蛋白质或细胞器,这一过程为细胞提供了自我更新所需的营养和物质[65]LC3是执行自噬的自噬体的一部分,自噬可以通过P62介导的NICD1与LC3的结合,促进Notch1的降解[66]NICD1的自噬降解在细胞核开始,细胞质中完成,用氯喹抑制自噬,不仅增加核内NICD的积累,而且提高其转录活性。因此,调控自噬活性,可能对Notch1相关疾病如结直肠癌等的治疗有重要意义[66]

2.4.Notch1与miRNAs

MicroRNAs (miRNAs)是一组内源性的、非编码的单链RNA,长度为18-25个核苷酸[67]。研究表明,miRNAs在几乎所有人类肿瘤中都发生了表达改变,其功能失调可改变多种细胞活动,在肿瘤发生、发展及侵袭中发挥重要作用[68, 69]miRNA-744可靶向作用于Notch1进而抑制结直肠癌的增殖和侵袭[70]miRNA-139-5p可靶向作用于Notchl及其下游的2个肿瘤耐药相关基因MRP-l、BCL-2并抑制其表达,从而增强结直肠癌细胞对5-FU的化疗效果[71]。在绒毛膜癌中,miRNA-34a可通过下调Notch信号通路中Notchl、Jaggedl的表达而抑制细胞的增殖和侵袭能力[72],但在结直肠癌中是否具有相似的作用,目前尚不清楚。此外,Notch1可以通过其对miR-29的早期作用启动CD4 T细胞向T辅助I型分化,进而调节人体免疫功能[73]

2.5.Notch1与EMT

EMT,是指上皮细胞受到相应刺激,失去固有的极性以及细胞间的连接能力,从而获得较高的迁移、侵袭及抗凋亡能力等间充质特征,是上皮源性的恶性肿瘤细胞获得迁移以及侵袭能力的重要生物学过程,在肿瘤远处转移过程中发挥重要的作用[74, 75]。在包括结直肠癌在内的多种肿瘤中,Notch1过表达可以调节下游信号AKT,进而促进EMT,增强肿瘤侵袭性,因此寻找靶向药物直接作用于Notch1/ AKT途径,可有效预防结直肠癌远处转移[76]

2.6.Notch1与结直肠癌治疗

放疗是结直肠癌II、III期患者术后及晚期患者进一步治疗的主要措施之一,然而将近一半的手术患者在放疗后仍会出现复发和转移[77]。虽然术前放化疗有助于改善结直肠癌局部症状及病理反应,但由于其固有的抗辐射性及耐药性,致使治疗效果欠佳。另外,在结直肠癌中Notch1基因拷贝数的增加及其肿瘤干细胞的存在,对常规的治疗产生自然抵抗力,影响治疗效果,导致预后欠佳[78, 79]DNA双链断裂(DSBs)是细胞毒性最强的损伤之一,对于大多数癌细胞来说,放疗会导致DNA断裂和相应的增殖抑制[80]。研究显示通过DAPT或si-Notch1转染抑制Notch1/Hes1信号通路,可以增强结直肠癌细胞的放疗敏感性,为提高结直肠癌患者放疗效果提供了潜在的治疗靶点[81]。姜黄素是从中药姜黄根茎中提取的活性成分,可通过下调Notch1信号通路,抑制结直肠癌细胞增殖,同时可以增强患者对放疗的敏感性及减轻化疗的副作用[82, 83]

传统中药 片仔癀可通过抑制Notch1通路抑制结直肠癌干细胞的增殖,诱导其凋亡和分化[84]金雀异黄酮通过Notch1 / NF-кB/ slug / E-cadherin途径逆转EMT诱导结肠癌细胞凋亡[85]

糖尿病患者结直肠癌的发病率增加是无可争辩的事实。研究证实,在合并有糖尿病的结肠癌患者,正常组织中Notch1/Hes1信号表达增强,而二甲双胍可以抑制该信号的过度激活,从而达到抑制肿瘤生长的目的,但需要更多的研究来了解二甲双胍在结直肠癌中的作用[86]

3.1.Wnt/β-catenin信号通路

Wnt信号通路是在物种进化过程中形成的高度保守的信号通路,主要由Wnt蛋白、跨膜受体卷曲蛋白、松散蛋白、APC复合物、β-catenin、胞质蛋白和核内转录因子等组成。Wnt/β-catenin信号通路是经典的Wnt通路,在人类器官系统发育过程中起着重要作用,其功能失调,会导致结直肠癌等多种肿瘤的发生[87, 88]

3.2.PKM2与Wnt/β-catenin信号通路

肿瘤细胞分泌的PKM2可通过多种方式调节β-catenin靶基因表达。如在EGFR的激活后,可诱导PKM2磷酸化后转位进入细胞核,激活β-catenin靶基因[20, 21];也可以通过激PI3K/Akt,进而诱导Wnt/β-catenin信号转录,促进结肠癌细胞迁移[89];还可以通过外泌体携带的Wnt蛋白调节β-catenin靶基因表达[31]

3.3.Notch1与Wnt/β-catenin信号通路

Notch和Wnt信号通路的串扰,可以促进结直肠癌的发生、发展及远处转移[90-92]。在大多数结肠癌标本中,Notch1和β-catenin共表达,且两者在结肠癌细胞中的分布位置相似[93],而对于Notch1和β-catenin之间的关系目前仍有争议。有研究表明在结直肠癌中β-catenin/ TCF通过直接调节Jagged1表达继而激活Notch1,认为Notch1位于Wnt信号通路下游,并受其正性调控[91]。也有研究认为,Notch1位于Wnt信号通路下游,但负性调控活性β-catenin水平[94]。还有研究认为在结直肠癌中Notch1通过表观遗传修饰可以抑制Wnt /β-catenin靶基因的表达[95]。但最新的研究认为Notch1通过激活Wnt信号通路在结肠癌中发挥致癌作用[93]。上述几种情况的出现,考虑与结直肠癌的发生、发展机制复杂、变化多端有关,而Notch1与Wnt/β-catenin之间的关系有待进一步明确。

4.PKM2与Notch1的相互作用探讨

通过对PKM2、Notch1与Wnt/β-catenin信号通路之间的相互作用分析,得出PKM2与Notch1之间可能有以下关系:1. PKM2与Nocth1具有协同作用; 2. PKM2促进Notch1的表达;3.PKM2抑制Notch1的表达。

但结合以下情况:PKM2与Notch1均在结直肠癌等多种恶性肿瘤中高表达,都与肿瘤的发生、发展及远处转移密切相关;都可通过参与自噬调节细胞活动;都可促进EMT,增强肿瘤侵袭性;HIF-1α可促进PKM2及Notch1在结直肠癌中[96]的表达;以及二者对结直肠癌治疗的拮抗作用及二甲双胍均可抑制二者的活性等。我们推测PKM2与Notch1之间以协同作用为主,但鉴于肿瘤发生的复杂机制,可能在不同的条件下,PKM2与Notch1之间表现出不同的关系。因此,我们仍需更多的研究来进一步明确二者之间的关系,这有助于我们寻找新的更有效的治疗结直肠癌的靶向药物。

【参考文献】

[1]DESANTIS C E, LIN C C, MARIOTTO A B, et al. Cancer treatment and survivorship statistics, 2014 [J]. CA: a cancer journal for clinicians, 2014, 64(4): 252-71.

[2]BASU A. Evaluating Estradiol Levels in Male Patients with Colorectal Carcinoma [J]. Journal Of Clinical And Diagnostic Research, 2015,

[3]CENTER M M, JEMAL A, SMITH R A, et al. Worldwide variations in colorectal cancer [J]. CA: a cancer journal for clinicians, 2009, 59(6): 366-78.

[4]CENTER M M, JEMAL A, WARD E. International trends in colorectal cancer incidence rates [J]. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 2009, 18(6): 1688-94.

[5]VAN CUTSEM E, NORDLINGER B, ADAM R, et al. Towards a pan-European consensus on the treatment of patients with colorectal liver metastases [J]. European journal of cancer (Oxford, England : 1990), 2006, 42(14): 2212-21.

[6]SHIROKI T, YOKOYAMA M, TANUMA N, et al. Enhanced expression of the M2 isoform of pyruvate kinase is involved in gastric cancer development by regulating cancer-specific metabolism [J]. Cancer science, 2017, 108(5): 931-40.

[7]BABAEI-JADIDI R, LI N, SAADEDDIN A, et al. FBXW7 influences murine intestinal homeostasis and cancer, targeting Notch, Jun, and DEK for degradation [J]. The Journal of experimental medicine, 2011, 208(2): 295-312.

[8]GUILMEAU S, FLANDEZ M, MARIADASON J M, et al. Heterogeneity of Jagged1 expression in human and mouse intestinal tumors: implications for targeting Notch signaling [J]. Oncogene, 2010, 29(7): 992-1002.

[9]NOAH T K, SHROYER N F. Notch in the intestine: regulation of homeostasis and pathogenesis [J]. Annual review of physiology, 2013, 75(263-88.

[10]P S, P B. Pyruvate kinase isoenzyme shift from L-type to M2-type is a late event in hepatocarcinogenesis induced in rats by a choline-deficient/DL-ethionine-supplemented diet.%A Hacker HJ [J]. Carcinogenesis, 1998, 19(1): 99-107.

[11]YANG Y C, CHIEN M H, LIU H Y, et al. Nuclear translocation of PKM2/AMPK complex sustains cancer stem cell populations under glucose restriction stress [J]. Cancer letters, 2018, 421(28-40.

[12]W Z, P J-D, E E. Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex.%A Mazurek S [J]. The Biochemical journal, 2001, 356(null): 247-56.

[13]WARBURG O. On the origin of cancer cells [J]. Science (New York, NY), 1956, 123(3191): 309-14.

[14]ABEYWARDANA T, OH M, JIANG L, et al. CARM1 suppresses de novo serine synthesis by promoting PKM2 activity [J]. The Journal of biological chemistry, 2018, 293(39): 15290-303.

[15]FISCHER K, HOFFMANN P, VOELKL S, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells [J]. Blood, 2007, 109(9): 3812-9.

[16]PRESEK P, GLOSSMANN H, EIGENBRODT E, et al. Similarities between a phosphoprotein (pp60src)-associated protein kinase of Rous sarcoma virus and a cyclic adenosine 3':5'-monophosphate-independent protein kinase that phosphorylates pyruvate kinase type M2 [J]. Cancer research, 1980, 40(5): 1733-41.

[17]HITOSUGI T, KANG S, VANDER HEIDEN M G, et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth [J]. Sci Signal, 2009, 2(97): ra73.

[18]FENG Y, LIU J, GUO W, et al. Atg7 inhibits Warburg effect by suppressing PKM2 phosphorylation resulting reduced epithelial-mesenchymal transition [J]. International journal of biological sciences, 2018, 14(7): 775-83.

[19]LUO W, HU H, CHANG R, et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1 [J]. Cell, 2011, 145(5): 732-44.

[20]YANG W, XIA Y, JI H, et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation [J]. Nature, 2011, 480(7375): 118-22.

[21]YANG W, ZHENG Y, XIA Y, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect [J]. Nat Cell Biol, 2012, 14(12): 1295-304.

[22]KOREN E, FUCHS Y. The bad seed: Cancer stem cells in tumor development and resistance [J]. Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy, 2016, 28(1-12.

[23]LUO W, SEMENZA G L. Emerging roles of PKM2 in cell metabolism and cancer progression [J]. Trends in endocrinology and metabolism: TEM, 2012, 23(11): 560-6.

[24]MARTINS V R, DIAS M S, HAINAUT P. Tumor-cell-derived microvesicles as carriers of molecular information in cancer [J]. Current opinion in oncology, 2013, 25(1): 66-75.

[25]MCALLISTER S S, WEINBERG R A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis [J]. Nat Cell Biol, 2014, 16(8): 717-27.

[26]D G, K L, A S, et al. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins.%A Subra C [J]. Journal of lipid research, 2010, 51(8): 2105-20.

[27]THERY C, AMIGORENA S, RAPOSO G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids [J]. Current protocols in cell biology, 2006, Chapter 3(Unit 3.22.

[28]RECORD M. Introduction to the Thematic Review Series on Extracellular Vesicles: a focus on the role of lipids [J]. J Lipid Res, 2018, 59(8): 1313-5.

[29]RECORD M, SILVENTE-POIROT S, POIROT M, et al. Extracellular vesicles: lipids as key components of their biogenesis and functions [J]. J Lipid Res, 2018, 59(8): 1316-24.

[30]SHELDON H, HEIKAMP E, TURLEY H, et al. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes [J]. Blood, 2010, 116(13): 2385-94.

[31]V C, K B, M B. Active Wnt proteins are secreted on exosomes.%A Gross JC [J]. Nature cell biology, 2012, 14(10): 1036-45.

[32]G D, X Z, C J, et al. Downregulation of circulating exosomal miR-638 predicts poor prognosis in colon cancer patients.%A Yan S [J]. Oncotarget, 2017, 8(42): 72220-6.

[33]WEI Y, WANG D, JIN F, et al. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23 [J]. Nature communications, 2017, 8(14041.

[34]B T, YF X, R X, et al. Long non-coding RNAs in colorectal cancer.%A Xie X [J]. Oncotarget, 2016, 7(5): 5226-39.

[35]BHAN A, SOLEIMANI M, MANDAL S S. Long Noncoding RNA and Cancer: A New Paradigm [J]. Cancer research, 2017, 77(15): 3965-81.

[36]PENG W X, KOIRALA P, MO Y Y. LncRNA-mediated regulation of cell signaling in cancer [J]. Oncogene, 2017, 36(41): 5661-7.

[37]BIAN Z, JIN L, ZHANG J, et al. LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p [J]. Scientific reports, 2016, 6(23892.

[38]BIAN Z, ZHANG J, LI M, et al. Long non-coding RNA LINC00152 promotes cell proliferation, metastasis, and confers 5-FU resistance in colorectal cancer by inhibiting miR-139-5p [J]. Oncogenesis, 2017, 6(11): 395.

[39]G S, J K, R U, et al. Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers.%A Takahashi Y [J]. British journal of cancer, 2014, 110(1): 164-71.

[40]Y Y, F W, MP M, et al. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α.%A Ma Y [J]. Gut, 2016, 65(9): 1494-504.

[41]LIU Y W, XIA R, LU K, et al. LincRNAFEZF1-AS1 represses p21 expression to promote gastric cancer proliferation through LSD1-Mediated H3K4me2 demethylation [J]. Molecular cancer, 2017, 16(1): 39.

[42]YE H, ZHOU Q, ZHENG S, et al. FEZF1-AS1/miR-107/ZNF312B axis facilitates progression and Warburg effect in pancreatic ductal adenocarcinoma [J]. Cell death & disease, 2018, 9(2):

[43]BIAN Z, ZHANG J, LI M, et al. LncRNA-FEZF1-AS1 Promotes Tumor Proliferation and Metastasis in Colorectal Cancer by Regulating PKM2 Signaling [J]. 2018, 24(19): 4808-19.

[44]CAVIGLIA G P, CABIANCA L, FAGOONEE S, et al. Colorectal cancer detection in an asymptomatic population: fecal immunochemical test for hemoglobin vs. fecal M2-type pyruvate kinase [J]. Biochemia medica, 2016, 26(1): 114-20.

[45]N Y, Y M. [Fecal Biomarker for Colorectal Cancer Diagnosis].%A Koga Y [J]. Rinsho byori The Japanese journal of clinical pathology, 2015, 63(3): 361-8.

[46]李勇, 王俊江. 结直肠癌患者血清、粪便中M2-PK表达的临床意义 [J]. 南方医科大学学报, 2011, 31(12): 2087-9.

[47]管振祺, 何凤屏, 徐新, et al. 肿瘤型M2-PK、APC、K-ras检测在结直肠癌诊断中的意义 [J]. 国际检验医学杂志, 2017, 38(05): 582-4.

[48]MARKOWITZ S D, BERTAGNOLLI M M. Molecular origins of cancer: Molecular basis of colorectal cancer [J]. The New England journal of medicine, 2009, 361(25): 2449-60.

[49]R M, N C. Colorectal cancer screening: prospects for molecular stool analysis.%A Davies RJ [J]. Nature reviews Cancer, 2005, 5(3): 199-209.

[50]DUELAND S, HAGNESS M, LINE P D, et al. Is Liver Transplantation an Option in Colorectal Cancer Patients with Nonresectable Liver Metastases and Progression on All Lines of Standard Chemotherapy? [J]. Annals of surgical oncology, 2015, 22(7): 2195-200.

[51]GUO W, ZHANG Y, CHEN T, et al. Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model [J]. Journal of cancer research and clinical oncology, 2011, 137(1): 65-72.

[52]SHI H S, LI D, ZHANG J, et al. Silencing of pkm2 increases the efficacy of docetaxel in human lung cancer xenografts in mice [J]. Cancer science, 2010, 101(6): 1447-53.

[53]CAO Y, LIN Y, WANG D, et al. Enhancing 5-fluorouracil efficacy through suppression of PKM2 in colorectal cancer cells [J]. Cancer chemotherapy and pharmacology, 2018,

[54]LI Q, ZHANG D, CHEN X, et al. Nuclear PKM2 contributes to gefitinib resistance via upregulation of STAT3 activation in colorectal cancer [J]. Scientific reports, 2015, 5(16082.

[55]SHI Y, LIU N, LAI W, et al. Nuclear EGFR-PKM2 axis induces cancer stem cell-like characteristics in irradiation-resistant cells [J]. Cancer letters, 2018, 422(81-93.

[56]R C. Diabetes mellitus and increased risk of cancer: focus on metformin and the insulin analogs.%A McFarland MS [J]. Pharmacotherapy, 2010, 30(11): 1159-78.

[57]FRANCIOSI M, LUCISANO G, LAPICE E, et al. Metformin therapy and risk of cancer in patients with type 2 diabetes: systematic review [J]. PloS one, 2013, 8(8): e71583.

[58]W F, S Z, K B, et al. Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling.%A Chen G [J]. American journal of cancer research, 2015, 5(4): 1423-34.

[59]WANG X, HA T. Defining single molecular forces required to activate integrin and notch signaling [J]. Science (New York, NY), 2013, 340(6135): 991-4.

[60]ARNETT K L, HASS M, MCARTHUR D G, et al. Structural and mechanistic insights into cooperative assembly of dimeric Notch transcription complexes [J]. Nature structural & molecular biology, 2010, 17(11): 1312-7.

[61]HASS M R, LIOW H H, CHEN X, et al. SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers [J]. Molecular cell, 2016, 64(1): 213.

[62]M K. Integrative genomic analyses on HES/HEY family: Notch-independent HES1, HES3 transcription in undifferentiated ES cells, and Notch-dependent HES1, HES5, HEY1, HEY2, HEYL transcription in fetal tissues, adult tissues, or cancer.%A Katoh M [J]. International journal of oncology, 2007, 31(2): 461-6.

[63]CHU D, LI Y, WANG W, et al. High level of Notch1 protein is associated with poor overall survival in colorectal cancer [J]. Annals of surgical oncology, 2010, 17(5): 1337-42.

[64]CHU D, WANG W, XIE H, et al. Notch1 expression in colorectal carcinoma determines tumor differentiation status [J]. Journal of gastrointestinal surgery : official journal of the Society for Surgery of the Alimentary Tract, 2009, 13(2): 253-60.

[65]GUO J Y, WHITE E. Autophagy, Metabolism, and Cancer [J]. Cold Spring Harbor symposia on quantitative biology, 2016, 81(73-8).

[66]ZHANG T, GUO L, WANG Y, et al. Macroautophagy Regulates Nuclear NOTCH1 Activity Through Multiple p62 Binding Sites [J]. IUBMB life, 2018, 70(10): 985-94.

[67]HUTVAGNER G, ZAMORE P D. A microRNA in a multiple-turnover RNAi enzyme complex [J]. Science (New York, NY), 2002, 297(5589): 2056-60.

[68]SUN Y, WANG L, GUO S C, et al. High-throughput sequencing to identify miRNA biomarkers in colorectal cancer patients [J]. Oncology letters, 2014, 8(2): 711-3.

[69]IORIO M V, CROCE C M. MicroRNAs in cancer: small molecules with a huge impact [J]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 2009, 27(34): 5848-56.

[70]SHEN J, LI M. MicroRNA-744 inhibits cellular proliferation and invasion of colorectal cancer by directly targeting oncogene Notch1 [J]. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 2018,

[71]LIU H, YIN Y, HU Y, et al. miR-139-5p sensitizes colorectal cancer cells to 5-fluorouracil by targeting NOTCH-1 [J]. Pathology, research and practice, 2016, 212(7): 643-9.

[72]PANG R T, LEUNG C O, YE T M, et al. MicroRNA-34a suppresses invasion through downregulation of Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells [J]. Carcinogenesis, 2010, 31(6): 1037-44.

[73]CHANDIRAN K, LAWLOR R, PANNUTI A, et al. Notch1 primes CD4 T cells for T helper type I differentiation through its early effects on miR-29 [J]. Molecular Immunology, 2018, 99(191-8.

[74]BANYARD J, BIELENBERG D R. The role of EMT and MET in cancer dissemination [J]. Connective tissue research, 2015, 56(5): 403-13.

[75]GRANT C M, KYPRIANOU N. Epithelial mesenchymal transition (EMT) in prostate growth and tumor progression [J]. Translational andrology and urology, 2013, 2(3): 202-11.

[76]PAL D, TYAGI A, CHANDRASEKARAN B, et al. Suppression of Notch1 and AKT mediated epithelial to mesenchymal transition by Verrucarin J in metastatic colon cancer [J]. Cell death & disease, 2018, 9(8): 798.

[77]ZHENG L, ZHANG Y, LIU Y, et al. MiR-106b induces cell radioresistance via the PTEN/PI3K/AKT pathways and p21 in colorectal cancer [J]. Journal of translational medicine, 2015, 13(252.

[78]ARCAROLI J J, TAI W M, MCWILLIAMS R, et al. A NOTCH1 gene copy number gain is a prognostic indicator of worse survival and a predictive biomarker to a Notch1 targeting antibody in colorectal cancer [J]. International journal of cancer, 2016, 138(1): 195-205.

[79]FLEMMING A. Cancer stem cells: Targeting the root of cancer relapse [J]. Nature reviews Drug discovery, 2015, 14(3): 165.

[80]VIGNARD J, MIREY G, SALLES B. Ionizing-radiation induced DNA double-strand breaks: a direct and indirect lighting up [J]. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology, 2013, 108(3): 362-9.

[81]ZHANG H, JIANG H, CHEN L, et al. Inhibition of Notch1/Hes1 signaling pathway improves radiosensitivity of colorectal cancer cells [J]. European journal of pharmacology, 2018, 818(364-70.

[82]CE H, M L, A K, et al. Curcumin for radiation dermatitis: a randomized, double-blind, placebo-controlled clinical trial of thirty breast cancer patients.%A Ryan JL [J]. Radiation research, 2013, 180(1): 34-43.

[83]杨芳, 刘少琼, 李春花, et al. 姜黄素下调结直肠癌细胞Notch1信号通路研究 [J]. 湖南中医药大学学报, 2015, 35(04): 10-3+50+73.

[84]QI F, WEI L, SHEN A, et al. Pien Tze Huang inhibits the proliferation, and induces the apoptosis and differentiation of colorectal cancer stem cells via suppression of the Notch1 pathway [J]. Oncology reports, 2016, 35(1): 511-7.

[85]ZHOU P, WANG C, HU Z, et al. Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-kappaB/slug/E-cadherin pathway [J]. BMC Cancer, 2017, 17(1): 813.

[86]YANG B, HUANG C Z, YU T, et al. Metformin depresses overactivated Notch1/Hes1 signaling in colorectal cancer patients with type 2 diabetes mellitus [J]. Anti-cancer drugs, 2017, 28(5): 531-9.

[87]B L. The Wnt connection to tumorigenesis.%A Behrens J [J]. The International journal of developmental biology, 2004, 48(null): 477-87.

[88]KA J. Wnt signaling: is the party in the nucleus?%A Willert K [J]. Genes & development, 2006, 20(11): 1394-404.

[89]Z L, Y W, L Z, et al. Secreted pyruvate kinase M2 facilitates cell migration via PI3K/Akt and Wnt/β-catenin pathway in colon cancer cells.%A Yang P [J]. Biochemical and biophysical research communications, 2015, 459(2): 327-32.

[90]SK P, M H, M L, et al. Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine.%A Fre S [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15): 6309-14.

[91]A V, A O-H, A R-M, et al. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer.%A Rodilla V [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15): 6315-20.

[92]AP M. Signaling in colon cancer stem cells.%A Roy S [J]. Journal of molecular signaling, 2012, 7(1): 11.

[93]T O, Y K, M K, et al. NOTCH1 activates the Wnt/β-catenin signaling pathway in colon cancer.%A Ishiguro H [J]. Oncotarget, 2017, 8(36): 60378-89.

[94]P C, IN K, P A, et al. Notch post-translationally regulates β-catenin protein in stem and progenitor cells.%A Kwon C [J]. Nature cell biology, 2011, 13(10): 1244-51.

[95]KIM H A, KOO B K, CHO J H, et al. Notch1 counteracts WNT/beta-catenin signaling through chromatin modification in colorectal cancer [J]. The Journal of clinical investigation, 2012, 122(9): 3248-59.

[96]WANG H G, CAO B, ZHANG L X, et al. KLF2 inhibits cell growth via regulating HIF-1alpha/Notch-1 signal pathway in human colorectal cancer HCT116 cells [J]. Oncology reports, 2017, 38(1): 584-90.

 

微信二维码
扫码添加微信咨询
QQ客服:1663286777
电话:137-1883-9017
收到信息将及时回复