心外膜脂肪组织对房颤影响新进展
郑金轩1 赵继义1
[摘要]:心房颤动是最常见的心律失常之一,其发病率和致残率逐年上升,由体重指数(BMI)定义的肥胖是诱发心房颤动的危险因素之一。心外膜脂肪组织是包裹在心脏外的异位内脏脂肪组织,有研究表明心外膜脂肪组织的形成与堆积和房颤发生相关,同时影响房颤射频消融术后再发。其中左心房外脂肪厚度是房颤发生的独立危险因素。但是心外膜脂肪组织导致房颤发生的机制尚不明确,本文从心外膜脂肪组织的形成和堆积、炎症反应及其促进心房纤维化、激活RAS系统促进心脏结构改变等角度阐述心外膜脂肪组织与房颤发生的机制。
[关键词]心房颤动 心外膜脂肪组织 炎症反应 纤维化
[abstract]Atrial fibrillation is one of the most common arrhythmias, and its morbidity and disability rate are increasing year by year. Obesity defined by body mass index BMI is one of the risk factors for atrial fibrillation. Epicardial adipose tissue is ectopic visceral adipose tissue wrapped around the heart. Studies have shown that the formation and accumulation of epicardial adipose tissue is associated with atrial fibrillation, and affects the recurrence of atrial fibrillation after ablation therapy. The thickness of epicardial adipose of left atrial is an independent risk factor for atrial fibrillation. However, the mechanism of epicardial adipose tissue leading to atrial fibrillation is still unclear. This article describes the epicardial adipose tissue and atrial fibrillation from accumulation, inflammation and activating the RAS system to promote atrial fibrosis.
[key words]Atrial fibrillation;epicardial adipose tissue;inflammation;fibrosis
一、心外膜脂肪组织的形成与堆积;
积聚在心外膜表面和下面的脂肪组织(AT),称为“心外膜脂肪组织”(EAT),是心房心肌的常见组织学成分。 在解剖学上,心外膜脂肪组织EAT被认为是特定的内脏脂肪组织(AT)贮库,负责局部递送脂肪酸和脂肪因子底物,并可以自由扩散到邻近的心肌[1]。心脏的外间皮层,即心外膜,含有许多多能祖细胞,可以进行上皮—间质转化(EMT)过程,从而产生多能的间充质心外膜细胞(EPDCs)[2-4]。最近有研究表明,一些心外膜来源的细胞在出生后早期发育过程中被分化为脂肪细胞,导致EAT积聚在房室沟内[4]。在成年心脏中是否存在这种心外膜细胞向脂肪细胞转换成为近年来研究热点。以往研究中将成年鼠中过表达脂肪形成转录因子过氧化物酶体增殖物激活受体-γ(PPARγ)并进行复杂的急性心脏损伤后,在心室内检测到一些心外膜来源的脂肪组织[5]。但是心外膜脂肪组织的来源与堆积尚不清楚。Nadine在研究中证实心房心外膜脂肪组织(EAT)是成人心房心外膜细胞通过EMT转化形成的。同时心房肌细胞分泌的低剂量心房利钠肽(ANP)促进成年间充质心外膜细胞EPDCs的脂肪形成分化[6]。人和小鼠成体EPDCs在体外显示出很强的分化为脂肪细胞的潜力。 此外,在人类心房和小鼠遗传谱系追踪模型中提供证据表明成人心房的心外膜细胞经历EMT后可以分化成脂肪细胞[6]。
二心外膜脂肪组织促进心肌纤维化
心外膜细胞已经被证实在经历进行上皮—间质转化(EMT)后具有迁移和分化成平滑肌细胞或肌成纤维细胞的能力[7]。EAT可以通过分泌细胞因子如激活素A[8]或通过促进心房心外膜的纤维化来促进邻近心房心肌的纤维化[9]。有研究推测,心外膜脂肪组织对改变心脏细胞组分具有潜在作用,包括促进肌成纤维细胞的增值和分化。以往研究证实,这些异位脂肪组织中含有很多干细胞,这些细胞不仅可以分化成脂肪组织,还可以分化成心肌细胞或者肌成纤维细胞,心脏脂肪组织可能是这些前体细胞的来源,可分化为肌成纤维细胞,促进心房结构重塑,增加房颤的易感性[10-12]。
三心外膜脂肪组织炎症反应与房颤
以往研究认为,炎症反应不仅仅与房颤的发生相关,同时也是房颤发生易感性的预测因子[13]。一些前瞻性流行病学研究证实,炎症可能会增加房颤的风险[14]。在冠心病的发生中,脂肪的堆积起到了至关重要的作用,同时,血管外周的脂肪细胞也同时分泌炎症因子来加速这一过程[15-16]。之前的一项研究从接受心脏手术的患者获得的EAT组织中发现它是炎症介质肿瘤坏死因子-α(TNF-α)和白细胞介素-6(IL-6)的重要局部来源[17-18],其可能对心房组织具有直接的致心律失常作用并且与AF发病有关[19]。 此外,最近报道单独AF和快速急性起搏会引起心房脂肪形成的显著变化并促进脂肪细胞分化和脂肪组织扩张[20]。在CT上炎症组织具有比非炎症组织更高的衰减值。Takashi Kusayama等人利用这一特性,在研究中利用CT影像检测心肌脂肪厚度以及其炎症反应程度,从而确定心外膜脂肪组织的厚度及炎症反应程度对房颤发生的影响。通过CT检查确定的左心房周围的平均心外膜脂肪组织密度及厚度,在阵发性房颤患者中较非房颤对照组更高,并证实了心外膜脂肪组织与阵发性房颤的存在显著相关,独立于其他代谢风险因素[21]。
四心外膜脂肪组织通过RAS系统影响心脏结构及功能。
肾素—血管紧张素系统(RAS)是具有内分泌和旁分泌功能的肽家族。 血管紧张素原是RAS的前体,可以通过肾素酶和血管紧张素转换酶(ACE)转化为Ang I和Ang II,ACE2是RAS家族的新成员,它是一种单羧基肽酶,可以将Ang II降解(或使其失活)成为Ang1-7。ACE2 / Ang1-7 / MasR轴是ACE / Ang II /AT1受体(AT1R)轴的负调节器。血管紧张素原在人和动物脂肪组织表达并分泌。同样,RAS的其他成分,包括AT1R,ACE2和MasR也在白色和棕色脂肪组织中表达[22]。激活RAS并由此产生的Ang II与肥胖相关的炎症密切相关[23]。有研究在高脂饮食的小鼠身上证实,肥胖导致WT小鼠脂肪组织中ACE2上调并且活化了的CD206C巨噬细胞表达增加,导致轻度的心外膜脂肪组织炎症,从而导致胰岛素抵抗和代谢障碍,最终导致结构改变、促进心衰发生,从而增加房颤的易感因素[24]。
五总结:
心房颤动是最常见的心律失常,房颤患者的心力衰竭及卒中发生风险较非房颤患者大大增加,但是房颤发生的原因尚不清楚。心外膜脂肪组织是积聚在心外膜表面和下面的异位脂肪组织。近期研究认为这种特定的脂肪堆积与阵发性房颤密切相关。心脏心外膜所包含的多能祖细胞,通过上皮—间质转化产生多能的间充质心外膜细胞(EPDCs),并且可以在发育过程中被分化为脂肪细胞,导致心房肌细胞生理脂肪或EAT积聚。以往的研究表明心脏结构重构是房颤发生的病理学基础。一方面,心外膜脂肪组织可以通过分泌如肿瘤坏死因子-α(TNF-α)和白细胞介素-6(IL-6)促进炎症反应,从而影响心房的重构;另一方面,心外膜脂肪组织参与RAS系统的激活,在一定程度上影响心脏结构改变。同时,心外膜脂肪组织可以通过分泌细胞因子促进邻近心肌组织纤维化及诱导脂肪细胞向肌成纤维细胞分化两种途径来促进心房组织纤维化诱导心房重构,增加房颤易感性。这可能为房颤的治疗提供新的潜在靶点。
参考文献:
[1]. Iacobellis G . Local and systemic effects of the multifaceted epicardial adipose tissue depot.[J]. Nature Reviews Endocrinology, 2015, 11(6):363.
[2]. Chong J J H , Chandrakanthan V , Biben C , et al. Adult cardiac-resident MSC-like stem cells with a proepicardial origin | NOVA. The University of Newcastle's Digital Repository[J]. Cell Stem Cell, 2011, 9(6):492-493.
[3] Bollini S, Vieira J M, Howard S, et al. Re-activated adult epicardial progenitor cells are a heterogeneous population molecularly distinct from their embryonic counterparts.[J]. Stem Cells & Development, 2014, 23(15):1719-30.
[4] Yukiko Yamaguchi, Susana Cavallero, Michaela Patterson, et al. Adipogenesis and epicardial adipose tissue: A novel fate of the epicardium induced by mesenchymal transformation and PPARγ activation[J]. Proc Natl Acad Sci U S A, 2015, 112(7):2070-2075.
[5]Liu Q, Huang X, Oh J H, et al. Epicardium-to-fat transition in injured heart[J]. Cell Research, 2014, 24(11):1367-1369.
[6]Suffee N , Moore-Morris T , Farahmand P , et al. Atrial natriuretic peptide regulates adipose tissue accumulation in adult atria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5):E771.
[7]Zhou B , Honor L B , He H , et al. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors[J]. Journal of Clinical Investigation, 2011, 121(5):1894.
[8] Venteclef N , Guglielmi V , Balse E , et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines[J]. European Heart Journal, 2015, 36(13):795.
[9].Haemers P , Hamdi H , Guedj K , et al. Atrial fibrillation is associated with the fibrotic remodelling of adipose tissue in the subepicardium of human and sheep atria.[J]. European Heart Journal, 2017, 38(1):53.
[10]Fraser J K , Wulur I , Alfonso Z , et al. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol[J]. Trends in Biotechnology, 2006, 24(4):150-154.
[11]Sim K W , Fen C , Wei E K S , et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes.[J]. Annals of Thoracic Surgery, 2003, 75(3):775-779.
[12]Zuk P A , Zhu M , Mizuno H , et al. Multilineage cells from human adipose tissue: implications for cell-based therapies.[J]. Tissue Engineering Part A, 2001, 7(2):211-228.
[13]Konishi M , Sugiyama S , Sugamura K , et al. Association of pericardial fat accumulation rather than abdominal obesity with coronary atherosclerotic plaque formation in patients with suspected coronary artery disease[J]. Atherosclerosis, 2010, 209(2):573-578.
[14]Mazurek T , Zhang L , Zalewski A , et al. Human epicardial adipose tissue is a source of inflammatory mediators.[J]. Circulation, 2003, 108(20):2460-2466.
[15] Jeong J W , Jeong M H , Yun K H , et al. Echocardiographic Epicardial Fat Thickness and Coronary Artery Disease[J]. Circulation Journal, 2007, 71(4):536-539.
[16] Iwayama T , Nitobe J , Watanabe T , et al. The role of epicardial adipose tissue in coronary artery disease in non-obese patients[J]. Journal of Cardiology, 2014, 63(5):344-349.
[17]Sawaya S E , Rajawat Y S , Rami T G , et al. Downregulation of connexin40 and increased prevalence of atrial arrhythmias in transgenic mice with cardiac-restricted overexpression of tumor necrosis factor.[J]. Journal of Vision, 2007, 9(3):74-76.
[18]Marcus G M , Whooley M A , Glidden D V , et al. Interleukin-6 and atrial fibrillation in patients with coronary artery disease: Data from the Heart and Soul Study[J]. American Heart Journal, 2008, 155(2):303-309.
[19]Tselentakis E V , Woodford E , Chandy J , et al. Inflammation effects on the electrical properties of atrial tissue and inducibility of postoperative atrial fibrillation.[J]. Journal of Surgical Research, 2006, 135(1):68-75.
[20] Chilukoti, R.K, Giese, et al. Atrial fibrillation and rapid acute pacing regulate adipocyte/adipositas-related gene expression in the atria[J]. International Journal of Cardiology, 2015, 187(1):604-613.
[21]草山, 隆志. Inflammation of left atrial epicardial adipose tissue is associated with paroxysmal atrial fibrillation[J]. Journal of Cardiology, 2016, 68(5):406-411.
[22] Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems.[J]. Physiological Reviews, 2006, 86(3):747-803.
[23]Yamamoto S , Yancey P G , Zuo Y , et al. Macrophage Polarization by Angiotensin II-type 1 Receptor Aggravates Renal Injury-acceleration of Atherosclerosis[J]. Arteriosclerosis Thrombosis & Vascular Biology, 2011, 31(12):2856.
[24]Jin H Y, Song B, Oudit G Y, et al. ACE2 deficiency enhances angiotensin II-mediated aortic profilin-1 expression, inflammation and peroxynitrite production[J]. Plos One, 2012, 7(6):e38502.