II型心肾综合征炎症机制研究进展
吴华芹1,张并璇1,李雨濛1,杨阳柳林1,赵畅2,宋庆桥1*
1.中国中医科学院广安门医院,北京 100053;2.大兴区中西医结合医院,北京,100076
[摘要]II型心肾综合征(type II cardio-renal syndrome,II型CRS)是慢性心力衰竭(Chronic Heart Failure,CHF)导致的慢性肾损伤,具有高发病率、高死亡率的特点,已经成为国内外研究的热点。II型CRS发病机制复杂,目前认为炎症反应II型CRS发生发展的关键机制之一,探索II型CRS的炎症机制,具有重要重要的临床意义。本文就II型CRS的炎症机制作一综述。
[关键词]心肾综合征;炎症;机制;
The advances in inflammation mechanism of type 2 cardio-renal syndrome
Wu Huaqin1, Zhang Bingxuan1, Li Yumeng1, Yang Yangliulin1, Zhao Chang2, Song Qingqiao1#
(1. Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053;2.Daxing District Hospital of Integrated Chinese and Western Medicine, Beijing, 100076)
ABSTRACT
Type 2 cardio-renal syndrome (CRS) is a type of chronic renal damage caused by chronic heart failure (CHF) with high morbidity and mortality, which has become a critical
problem worldwide. The pathogenesis of type 2 CRS is complicated, it is now widely accepted that the inflammatory response is one of the key mechanisms for the development of type 2 CRS. Therefore, to explore the inflammatory mechanism of type 2 CRS is of great clinical significance. This article reviews the inflammatory mechanism of type 2 CRS.
Keywords: cardio-renal syndrome, inflammatory, mechanism
心肾综合征(cardio-renal syndrome, CRS)是指心力衰竭和肾功能不全同时存在的状态,二者相互影响,互为因果,形成恶性循环,加速了多器官功能衰竭,使得病死率增加[1]。慢性肾脏疾病和慢性心力衰竭之间的双向相关关系已被证实[2]。2008年Ronco 等[3]根据心肾同病过程中的因果关系将CRS 分为5型。其中II型 CRS 是指慢性心功能不全导致的肾功能不全。随着人口老龄化加剧和带病生存的心衰患者人数增加,II型CRS的发病率逐年增加[4] 。研究显示急性失代偿性HF患者中,有25%-33%可出现肾功能损害,发展为CRS[5] 。2013年国外一项关于心力衰竭患者合并肾功能损伤的meta分析[6]显示心衰合并肾功能损伤的患者预后更差,且CHF的死亡率与肾功能损伤程度呈显著正相关。目前临床上II型CRS发病率高、治疗棘手,花费较高,且预后不良,给心肾双学科领域带来了很大挑战。因此积极开展II型CRS的病生理机制研究,寻求更有效的治疗方法具有重要意义。目前普遍认为II型CRS的病生理机制与血流动力学改变,静脉充血与贫血,神经内分系统过度激活,氧化应激、炎症反应等有关[7],这些机制相互影响,形成恶性循环,进一步加重心肾功能损害。而其中炎症反应被认为是心肾交互作用的关键环节[7][8]。积极探索II型CRS的炎症机制具有重要意义。
1.CRS时炎症反应的机制
1.1神经内分泌系统过度激活
已知神经内分泌系统过度激活是心肾综合征发生发展的关键病理因素,而肾素-血管紧张素-醛固酮系统(Rennin Angiotensin Aldosterone System,RAAS)和交感神经系统(Sympathetic Nervous System ,SNS)过度激活能够诱导炎症反应的发生,引起促炎因子释放,加重心肌损伤[9]和肾功能损害[10]。研究显示血管紧张素Ⅱ(AngiotensionⅡ,ATⅡ)本身具有显著的促炎作用,能够诱导血管内皮细胞和平滑肌细胞活性氧产生,促进细胞间黏附分子(Intercellular Adhesion Molecule-1, IACM-1)和肿瘤坏死因子-α(Tumor Necrosis Factor-α,TNF-α)、白介素-6(Interleukin 6,IL-6)表达,导致血管内皮功能障碍,促进动脉粥样硬化的发生[11]。同时ATⅡ能够刺激肾小球系膜细胞分泌IL-6、TNF-α,刺激单核细胞分泌单核趋化因子-1(Monocyte Chemoattractant Peptide-1,MCP-1)等,促进炎症状态发生,炎症反应又进一步加重肾功能损害[10]。同时心衰时SNS激活,通过去甲肾上腺素介导心、肝产生细胞因子,诱导炎症反应,炎症反应除加重心脏病变外,对肾功能亦造成不利影响。β受体阻滞剂可以降低心梗后心肌细胞炎症因子的表达,保护心肾功能[12]。
1.2血流动力学改变
心衰时血流动力学改变往往是促进心肾综合征发生发展始动因素,心衰时的低血流灌注状态、静脉淤血及腹内压增高,除能直接引起肾脏缺血缺氧损伤外,亦可通过炎症反应,促进心肾综合征病情恶化。已有研究证实[13] 容量超负荷和静脉充血是炎症介质释放的重要原因。其机制主要与血管内充血,压力超负荷,使血管内皮受损,炎症因子MCP-1和IL-8过度表达有关[14]。
1.3氧化应激反应
氧化应激是炎症因子的强有力诱导剂。氧化应激增强,可通过炎症反应加剧心肾功能损害。心肌梗死急性期,心肌缺血缺氧再灌注损伤,产生大量活性氧(Reactive Oxygen Species,ROS),可促进炎症因子TNF-α、IL-1和IL-6的表达,进一步加剧心肌损伤[15]。同时众多研究证实[16],慢性肾衰竭患者体内氧化应激水平升高,且与炎症反应程度正相关。ECe等[17]亦研究发现氧化应激能促进炎症反应标记物的释放,且与肾功能不全和尿毒症病情严重程度正相关。提示氧化应激是引起CRS炎症反应的重要原因。
1.4微生物抗原和微生物感染
病原微生物感染是引起CRS急性发病和病情加重的常见诱因,病原微生物介导炎症免疫反应使血管内皮受损、促进动脉粥样硬化硬化的发生发展,进而加重心肌缺血,损伤心功能,同时可促进肾血管硬化的发生发展,引起肾功能损伤。早在二十年前微生物感染与动脉硬化的关系得到广泛研究,其中肺炎支原体备受关注。慢性肺炎支原体感染参与动脉粥样硬化斑块形成,是冠心病的危险因素,且与严重冠脉事件有关。其机制与病原体介导的免疫反应,损伤血管内皮,内皮细胞脂质沉积,促炎因子释放有关[18]。
1.5内毒素假说
内毒素(尤其从肠道侵入的内毒素)能够引发CHF患者水肿期的免疫反应。Conraads等[19]发现,选择性的肠道除菌能减少严重HF患者肠道内毒素,使单核细胞CD14表达下降和炎症细胞因子产生减少。Sandek等[20]发现,在失代偿的CHF患者中,肠道上皮功能障碍导致肠壁水肿,其机制与肠道内毒素移位促进炎症因子TNF-α、可溶性肿瘤坏死因子I型受体(Soluble Tumor Necrosis Factor Receptor Type I,sTNF-RI)释放有关。同时晚期糖基化终末产物作为尿毒症毒素的一种,在尿毒症病人血清和组织中含量明显升高。可直接促发单核/巨噬细胞介导的炎症反应,加重肾功能损伤[21]。
2.炎症反应对肾脏的打击
CHF全身持续微炎状态,可以造成远处器官肾脏的损伤。炎症因子通过多种机制损害肾功能。全身微炎状态与心肾损害互为因果,相互为害,是II型CRS发生发展的重要原因[8]。
已有研究证实 CRS与炎症相关[7]。在所有类型的CRS中,IL-8均表达增加,同时发现在所有类型CRS中纤溶酶原激活物抑制剂-1( Plasminogen activator inhibitor-1,PAI-1)与IL-8相关,其中与II型和V型CRS关系最密切。Ortega等[22]研究显示炎症因子IL-10,内皮素-1(Endothelin-1,ET-1)、IL-1β、金属蛋白酶组织抑制剂-1(Resolvin-D1、RvD1)和脂氧素-A4(Lipoxin-A4,Lx-A4)与急性冠脉综合征造成的急性肾损伤明显相关。炎症反应对肾脏的打击主要包括以下几个方面。
2.1肾小球硬化和肾间质纤维化
CHF时肾静脉充血,肾动脉血流灌注减少,导致肾内RAAS和SNS系统活性增加,SNS和ATII激活刺激肾脏还原型烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NADPH)释放增加,产生大量活性氧,直接导致肾小球足细胞损伤,导致蛋白尿[23]。随着肾脏中醛固酮水平的增加,氧化应激增强。刺激肾脏自旁分泌糖蛋白galectin-3表达增加,转化生长因子-β(Transforming growth factor beta,TGF-β)表达上调,肾脏成纤维细胞异常增殖,胶原大量产生,随后纤连蛋白增加,导致肾间质纤维化和肾小球硬化,久而久之造成肾功能不全[24]。
Lekawanvijit等[25]研究显示RAAS系统异常激活,ATII分泌增加,促进多种炎症因子产生,通过激活TGF-β/Smad和核转录因子-κB (Nuclear Factor Kappa B,NF- κB)信号通路,促进细胞增殖和肾小球细胞细胞外基质合成,导致肾小球硬化和肾间质纤维化。RAAS抑制剂可以减轻肾脏纤维化,延缓肾功能发展。可见CHF时氧化应激、炎症反应、RAAS和SNS的异常激活共同促进肾小球硬化和肾间质纤维化,进而导致肾功能损伤。
2.2胰岛素抵抗
CHF时炎症因子的过度释放,可诱发胰岛素抵抗,引起肾脏损伤,造成肾功能恶化。目前已证实炎症反应与胰岛素抵抗密切相关[26] [27]。CHF时脂肪组织分泌大量炎症因子,如TNF-α、IL-1、IL-6等,这些脂源性的细胞因子引起的慢性炎症可通过抑制胰岛素信号转导,而在脂肪组织,骨骼肌和肝脏中引起胰岛素抵抗[28]。Dipetrillo等[29]证实循环中的TNF-α可直接作用于胰岛β细胞造成胰岛细胞损伤,诱发胰岛素抵抗。
CHF时炎症反应导致的胰岛素抵抗可直接引起肾脏损伤,造成肾功能恶化。高胰岛素血症可以直接损伤肾脏,胰岛素对肾小管有较强的保钠作用,高胰岛素血症可导致血压的盐敏感性增加,使肾小球内压升高,从而引起微量蛋白尿[30]。另外高胰岛素血症可激活RAAS系统和SNS系统,引起血管内皮收缩,导致高血压,引起慢性肾小管-间质病变,晚期出现肾间质纤维化,长期的高压力负荷可加重肾脏缺血、加速肾小动脉硬化和肾小球硬化,最终导致肾萎缩和肾衰竭。RAAS系统激活引起高血压、脂代谢紊乱和氧化应激,也可以损伤肾血管内皮功能,导致肾小球硬化,介导肾损伤[31]。
2.3肾血管动脉粥样硬化
现已普遍认为动脉粥样硬化是一种慢性炎症性疾病,炎症反应参与了动脉粥样硬化的始末[32] 。动脉粥样硬化是CHF发生的诱因,CHF时持续的炎症反应又可以促进动脉粥样硬化的发展,不仅影响心脏,而且损害肾脏。CHF发展过程中持续的炎症状态,导致血管内皮损伤,引发一系列反应(如一氧化氮合酶活性降低、血管壁通透性增高、粘附分子及化学趋向物聚集),在这些共同因素作用下,内皮细胞摄取氧化低密度脂蛋白,形成泡沫细胞,随后病灶发展以致逐步形成脂纹、纤维斑块和粥样斑块。导致心血管疾病的发生[32]。另外肾脏大血管和微血管内皮细胞受损,脂质沉积,动脉粥样硬化斑块形成,可造成肾血流灌注减少,肾脏缺血缺氧,肾内RAAS和SNS激活,TGF-β1/Smad信号通路激活,促进肾小球硬化和肾间质纤维化,久而久之导致肾功能减退。
2.4肾血管钙化
Zhao等[33]发现人钙化血管组织和肾衰大鼠血浆中炎症因子TNF-α、NF-κB 活性增加有关。体外实验证实TNF-α可通过激活NF-κB信号通路,促进Tristetraprolin基因表达,减少ANKH(Progressive Ankylosis Gene)蛋白释放。ANKH 表达下调使焦磷酸( PPi) 分泌减少,进而加重高磷诱导的平滑肌细胞钙沉积,促进血管钙化,进而影响肾功能。
3.炎症因子相关的细胞信号通路
3.1 TLR4/NF-κB信号通路
Toll样受体4(Toll-like receptor 4,TLR4)/NF-κB信号通路是目前公认的炎症信号通路。TLR4过度表达,激活其下游靶蛋白NF-κB,引起促炎因子释放,炎症介质可进一步激活TLR4/NF-κB的表达,形成叠加效应,引起机体产生一系列病生理变化。TLR4/NF-κB作为重要细胞信号通路参与细菌感染[34]、心肌重构[35]、肾脏缺血再灌注损伤[36]、神经系统损伤[37]等多种炎性疾病。脂多糖(Lipopolysaccharide,LPS),是革兰氏阴性菌外膜结构成分,是炎症反应的最有效刺激物。LPS引起的全身炎症反应综合征,主要是通过激活TLR4,使其下游靶蛋白NF-κB表达增加,促进炎症因子IL-1和TNF-α释放而实现的[34]。
NF-κB是TLR4下游主要分子效应器,是促进TNF-α、IL-1、IL-6等炎症因子表达的核内转录因子,CHF时NF-κB表达上调,促炎因子释放增加,诱导心肌损伤和心肌重构[35]。TLR4信号通路被证实能够介导肾缺血-再灌注损伤(Ischemia/Reperfusion Injury,IRI),肾脏IRI导致TLR4表达增强,促炎因子IL-6、TNF-α和巨噬细胞炎性蛋白2(Macrophage Inflammatory Protein-2,MIP-2)、MCP1高表达,从而引起肾功能损伤[36]。而茶多酚可通过抑制TLR4/NF-κBp65蛋白的表达,减少IL-1、IL-6、IACM-1和TNF-α的表达,保护肾小管上皮细胞免受IRI,减轻肾小管上皮细胞凋亡[38]。
3.2 p38MAPK信号通路
丝裂原活化蛋白激酶(Mitogen-Activated Protein Kinases,MAPKs)为细胞内信号通路中的一类蛋白质,广泛存在于哺乳动物细胞内,可将细胞外信息传递到细胞内,介导细胞之间各种级联反应。MAPK通路主要有四条途径,其中p38MAPK信号通路是MAPK家族的最重要组成部分。许多研究证实p38MAPK信号通路与炎症密切相关[39]。Lakshmanan等[40]研究证实炎症因子如IL-1和TNF,LPS、IRI等,均可介导单核细胞、中性粒细胞等免疫细胞中p38MAPK通路的激活,该通路被激活后,促进TNF-α、IL-1β和IL-6等促炎因子的产生,增强细胞的炎性浸润。Park等[41]研究表明,p38MAPK对于介导中性粒细胞和内皮细胞的炎性信号是不可或缺的,炎性反应中TNF-α的产生与p38MAPK激活密切相关。
近年来p38MAPK信号通路被证实是介导炎症损伤导致肾小球硬化和肾间质纤维化的重要细胞信号通路之一。TGF-β是导致肾脏纤维化的主要效应因子[42]。在TGF-β信号通路中,Smad2和Smad3是重要的信号传递介质[43]。TGF-β通过Smad2、Smad3或MAPK通路激活,诱导多种纤维化蛋白的表达参与肾脏纤维化过程[44]。另外p38MAPK激活可以激活NF-κB信号通路,使NF-κB表达上调,NF-κB活化后能诱导许多炎症因子的转录,炎症因子又可激活细胞质中的NF-κB,促进肾小球硬化和肾小管间质纤维,加重肾功能损伤[45]。
3.3 TGF-β1/Smad信号通路
TGF-β是一种调控细胞增殖和分化的细胞因子,有5种亚型,其中TGF-β1主要在肾脏表达,肾小管上皮细胞较肾小球为多[46]。TGF-β1/Smad信号通路被证实是介导心肌和肾脏纤维化的重要细胞信号通路[47]。CHF时,RAAS激活,ATII分泌增加,促炎因子释放,TGF-β1过渡激活,促进靶细胞肥大,细胞外基质蛋白分泌和聚集增加[48]。同时TGF-β1激活,下游效应因子Smad表达增加,诱导肾小管上皮细胞分化为肌成纤维细胞,促进肾小管间质纤维化进展[49]。
4.微小RNA与炎症调控
MicroRNAs ( miRs) 是一类内源性的、非编码的小 RNA,其在抑制转录后基因表达和促进靶mRNA降解的过程中起重要的负性调节作用,具有调控细胞增殖、分化和凋亡等生物学功能[50]。近年来miRs在慢性心衰和慢性肾衰疾病中被广泛研究,miRs通过调控炎症反应介导心肌损伤、心室重构[51] [52][53],促进肾脏纤维化[54]。一些miRs被证实可以作为心衰病情判断的早期标志物,并有可能成为疾病治疗干预的靶点。Bruno等[55]研究显示,miR-199a-3p与急性HF导致的早期肾功能恶化有关,是I型CRS的最强预测指标。
4.1 miRs与CHF
近年来研究发现miRs与心衰炎症状态密切相关,CHF进程中存在慢性炎症激活和miRs的异常表达。点阵分析技术发现,CHF时miR-1,miR-29,miR-30,miR-133 和miR-150表达下调,miR-21,miR-23a,miR-125,miR-146a/b,miR-155,miR-195,miR-199和miR-214表达上调[51]。miRs参与CHF炎症调控,主要是通过细胞间信号通路传导来实现的。其中TLR4/NF-κB 通路是被广泛研究和认同,miRs异常表达,可以上调TLR4/NF-κB表达,促进炎症因子如 IL-1、IL-6、TNF-α的释放,促进心肌细胞肥大,诱导心肌细胞凋亡和心肌纤维化,最终导致心功能衰竭,促进CHF发生发展[52] [53]。
4.2 miRs与慢性肾脏病
已有越来越多证据显示,miRs与慢性肾脏病密切相关[54]。miRs在TGF-β信号通路导致的肾脏纤维化中起关键作用。Xie等[56]研究发现,miR-155在肾小管上皮细胞中通过调节TGF-β1促进肾脏纤维的产生。在肾脏损伤时miR-214通过TGF-β信号通路,促进肾脏纤维化[57]。TGF-β在肾脏纤维化中也能调控多种miRs的功能。TGF-β1可以抑制miR-19及miR-200家族表达,诱导miR-21、miR-192、miR-491-5p、miR-382、miR-377、miR-214及miR-433产生[58] [59] [60] [61] [62]。同时miRs亦能反过来调节TGF-β/Smad3信号通路,在肾损伤时,TGF-β诱导miR-21的表达,miR-21升高会抑制Smad7的表达,增强TGF-β信号通路[62]。另外一些miRs负性调控TGF-β的表达。如miR-200a的过表达会抑制TGF-β2的表达,进而影响Smad3的激活及TGF-β1诱导的肾纤维化[63]。miR-29也以同样的方式负向调节TGF-β的表达[64]。
5.小结与展望
综上,炎症反应是II型CRS发生发展的关键环节。而miRs对炎症反应起重要的调控作用,即是炎症反应的结果,又能进一步调控炎症反应。miRs通过细胞间信号通路介导的炎症反应,可能是导致CHF时肾脏功能损伤的重要机制,CHF向CRS发展过程中炎性反应机制可能存在的调控链总结(见图1)。虽然目前miRNAs在CHF和CKD中被广泛研究,但CHF向CRS发展过程中哪些miRs异常表达,尚不十分清楚。且对miRs调控的下游细胞信号通路研究尚不够深入。因此,比较研究CHF和CRS之间miRs的变化,推测靶蛋白和相关炎症因子,将有助于解释CRS的发病机制,为进一步研究干预靶点提供依据。
![]() |
图1 CHF向CRS转化过程中可能存在的炎症反应调控链
参考文献:
[1] Liu P P. Cardiorenal syndrome in heart failure: a cardiologist's perspective[J]. Canadian Journal of Cardiology, 2008, 24(supplement B):25B-29B.
[2] Andrukonis K, Bell C, Bodine L, et al. Cardiorenal syndrome: understanding the connections between cardiac and renal disease[J]. Jaapa Official Journal of the American Academy of Physician Assistants, 2014, 27(2):12-17.
[3] Ronco C, Haapio M, House AA, et al. Cardiorenal syndrome[J].J Am Coll Cardiol, 2008,52(19):1527-1539.
[4] Kingma JG,Simard D,Rouleau JR. Renocardiac syndromes:physiopathology and treatment stratagems[J].Can J Kidney Health Dis,2015,2015(2):41-50.
[5] Virzì G M, Day S, Cal M D, et al. Heart-kidney crosstalk and role of humoral signaling in critical illness[J]. Critical Care, 2014, 18(1):201-214.
[6] Damman K, Valente M A, Voors A A, et al. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis[J]. European Heart Journal, 2014, 35(7):455-469.
[7] Tasic D, Radenkovic S, Kocic G, et al. Microinflammation factors in the common diseases of the heart and kidneys[J]. Disease Markers, 2015, 2015:470589.
[8] Cho E, Kim M, Ko Y S, et al. Role of inflammation in the pathogenesis of cardiorenal syndrome in a rat myocardial infarction model[J]. Nephrology, dialysis, transplantation:official publication of the European Dialysis and Transplant Association - European Renal Association, 2013, 28(11):2766-2778.
[9] Mamamtavrishvili N D, Kvirkveliia A A, Abashidze R I, et al. Role of immune inflammatory activity in chronic heart failure progress[J]. Georgian Medical News, 2008(160-161):30-34.
[10]焦占峰, 白光辉. 维持性血液透析患者微炎症状态研究的意义及进展[J]. 中国血液净化,2010,9(12):675-677.
[11]Brasier A R, Recinos A, Eledrisi M S. Vascular Inflammation and the Renin-Angiotensin System[J]. Arteriosclerosis Thrombosis & Vascular Biology,2002,22(8):1257-1266.
[12]Prabhu SD,Chandrasekar B, Murray DR,et al. beta-adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling[J]. Circulation, 2000,101(17):2103-2109.
[13]Tsutamoto T, Hisanaga T, Wada A,et al.Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure[J].J Am Coll Cardiol,1998,31(2):391-398.
[14]Krüger S, Kunz D, Graf J, et al. Endotoxin hypersensitivity in chronic heart failure[J].International Journal of Cardiology, 2007, 115(2):159-163.
[15] Pomerantz B J, Reznikov L L, Harken A H,et al. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(5):2871-2876.
[16]Witkosarsat V, Friedlander M, Khoa T N, et al. Advanced Oxidation Protein Products as Novel Mediators of Inflammation and Monocyte Activation in Chronic Renal Failure[J].Journal of Immunology, 1998, 161(5):2524-2532.
[17] Ece A, Gürkan F, Kervancioğlu M, et al. Oxidative stress, inflammation and early cardiovascular damage in children with chronic renal failure[J].Pediatric Nephrology,2006,21(4):545-552.
[18]Zibaeenezhad M J, Amant A. CHLAMYDIA PNUMONIAE AND CORONARY ARTERY DISEASE[J].Cardiovascular Pathology, 2004,13(3):66-67.
[19]Conraads V M, Jorens P G, De Clerck L S, et al. Selective intestinal decontamination in advanced chronic heart failure: a pilot trial[J]. European Journal of Heart Failure,2004,6(4):483-491.
[20]Sandek A, Bjarnason I, Volk H D, et al. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure[J].International Journal of Cardiology,2012,157(1):80-85.
[21]Toborek M, Wasik T, Drózdz M, et al. Effect of hemodialysis on lipid peroxidation and antioxidant system in patients with chronic renal failure[J]. Metabolism Clinical &Experimental,1992,41(11):1229-1232.
[22]Ortega-Hernández J, Springall R, Sánchez-Muñoz F, et al. Acute coronary syndrome and acute kidney injury: role of inflammation in worsening renal function[J].Bmc Cardiovascular Disorders,2017, 17(1):202.
[23]Rafiq K, Noma T, Fujisawa Y, et al.Renal sympathetic denervation suppresses de novo podocyte injury and albuminuria in rats with aortic regurgitation[J].Circulation, 2012,125(11):1402-1413.
[24]Remuzzi G, Cattaneo D, Perico N.The aggravating mechanisms of aldosterone on kidney fibrosis[J].J Am Soc Nephrol 2008,19(8):1459-1462.
[25]Lekawanvijit S, Krum H. Cardiorenal Syndrome: Acute Kidney Injury Secondary to Cardiovascular Disease and Role of Protein-Bound Uremic Toxins[J].Journal of Physiology, 2014,592(18):3969-3983.
[26]Ohshima K, Mogi M, Jing F,et al. Roles of interleukin 17 in angiotensin II type 1 receptor-mediated insulin resistance[J]. Hypertension,2012,59(2):493-499.
[27]Brunner E J, Kivimäki M, Witte D R, et al. Inflammation, Insulin Resistance, and Diabetes-Mendelian Randomization Using, CRP, Haplotypes Points Upstream[J].Plos Medicine,2008,5(8):e155.
[28]Luca C D, Olefsky J M.Inflammation and Insulin Resistance[J].Febs Letters,2006,582(1):97-105.
[29]Dipetrillo K, Coutermarsh B, Gesek F A. Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes[J]. American Journal of Physiology Renal Physiology, 2003,284(1):113-121.
[30]Sheen Y J, Sheu H H. Metabolic Syndrome and Renal Injury[J]. Cardiology Research and Practice, 2011,2011(2011):567389.
[31]Manrique C,Lastra G,Gardner M,et al. The renin angiotensin aldosterone system in hypertension: roles of insulin resistance and oxidative stress[J]. Med Clin North Am, 2009, 93(3):569-582.
[32]Libby P.Inflammation in atherosclerosis.Nature, 2002,420(6917):868-874.
[33]Zhao G,Xu M J,Zhao M M,et al. Activation of nuclear factor-kappa B accelerates vascular calcification by inhibiting progressive ankylosis protein homolog expression[J].Kidney International, 2012, 82(1):34-44.
[34]Płóciennikowska A, Hromada-Judycka A, Borzęcka K,et al. Cooperation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling[J]. Cellular & Molecular Life Sciences,2015,72(3):557-581.
[35]Da Costa Martins PA, Bourajjaj M, Gladka M, et al.Conditional dicer gene deletion in the postnatal myocardium provokes spontaneo us cardiac remodeling[J]. Circulation,2008,118(15):1567-1576.
[36] Wu H, Chen G, Wyburn K R, et al. TLR4 activation mediates kidney ischemia/reperfusion injury[J].Journal of Clinical Investigation, 2007,117(10): 2847-2859.
[37]Yicong Wei, Jianxiong Chen, Yonghong Hu, et al. Rosmarinic Acid Mitigates Lipopolysaccharide-Induced Neuroinflammatory Responses through the Inhibition of TLR4 and CD14 Expression and NF-κB and NLRP3 Inflammasome Activation[J].Inflammation, 2018,41(2):732-740.
[38]Li Y W, Zhang Y, Zhang L, et al. Protective effect of tea polyphenols on renal ischemia/reperfusion injury via suppressing the activation of TLR4/NF-κB p65 signal pathway[J].Gene, 2014, 542(1):46-51.
[39]Lim A K H, Tesch G H. Inflammation in Diabetic Nephropathy[J]. Mediators of Inflammation,2012,2012(5):146-154.
[40]Lakshmanan A P, Thandavarayan R A,Watanabe K, et al. Modulation of AT-1R/MAPK cascade by an olmesartan treatment attenuates diabetic nephropathy in streptozotocin-induced diabetic mice[J]. Molecular & Cellular Endocrinology, 2012,348(1):104-111.
[41]Park E J, Park S W, Kim H J, et al.Dehydrocostuslactone inhibits LPS-induced inflammation by p38MAPK-dependent induction of hemeoxygenase-1 in vitro and improves survival of mice in CLP-induced sepsis in vivo[J]. International Immunopharmacology,2014,22(2):332-340.
[42]Meng X M, Huang X R, Xiao J, et al. Disruption of Smad4 impairs TGF-β/Smad3 and Smad7 transcriptional regulation during renal inflammation and fibrosis in vivo, and in vitro[J].Kidney International,2012,81(3):266-279.
[43]Meng X M, Chung A C K, Lan H Y. Role of the TGF-β/BMP-7/Smad pathways in renal diseases[J]. Clinical Science,2013,124(4):243-254.
[44]Chung A C K, Lan H Y. MicroRNAs in renal fibrosis[J]. Front Physiol, 2015,6:50.
[45]Hwang D M, Kundu J K, Shin J W, et al.cis-9,trans-11-conjugated linoleic acid down-regulates phorbol ester-induced NF-kappaB activation and subsequent COX-2 expression in hairless mouse skin by targeting IkappaB kinase and PI3K-Akt[J]. Carcinogenesis, 2007, 28(2):363-371.
[46]Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus[J].Cell,2003,113(6):685-700.
[47]Hundae A, Mccullough P A. Cardiac and renal fibrosis in chronic cardiorenal syndromes[J].Nephron Clinical Practice,2014,127(1-4):106-112.
[48]Ziyadeh F N. Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator[J].Journal of the American Society of Nephrology Jasn,2004, 15 (Suppl1):55-57.
[49]López-Hernández F J, López-Novoa J M. Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects[J]. Cell & Tissue Research, 2012, 347(1):141-154.
[50]Lund E,Güttinger S,Calado A,et al.Nuclear export of microRNA precursors[J].Science,2004,303( 5654):95-98.
[51]Van Rooij E, Sutherland LB, Thatcher JE,et al.Dysregulation of mi-croRNAs after myocardial infarction reveals a role of miR-29 in card-iac fibrosis[J].Proc Natl Acad Sci USA, 2008,105(35):13027-13023.
[52]Fang Y, Shi C,Manduchi E,et al. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(30):13450-13455.
[53]Von H S, Schefold J C,Lainscak M,et al.Inflammatory Biomarkers in Heart Failure Revisited: Much More than Innocent Bystanders[J]. Heart Failure Clinics, 2009,5(4):549-560.
[54]Lorenzen J M, Haller H, Thum T. MicroRNAs as mediators and therapeutic targets in chronic kidney disease[J]. Nature Reviews Nephrology, 2011,7(5):286-294.
[55]Bruno N, Ter Maaten J M, Ovchinnikova E S,et al.MicroRNAs relate to early worsening of renal function in patients with acute heart failure[J].International Journal of Cardiology, 2017, 203(11):564-569.
[56]Xie S, Chen H, Li F,et al.Hypoxia-induced microRNA-155 promotes fibrosis in proximal tubule cells[J]. Molecular Medicine Reports, 2015,11(6):4555-4560.
[57]Denby L,Ramdas V,Lu R,et al. MicroRNA-214 Antagonism Protects against Renal Fibrosis[J]. Journal of the American Society of Nephrology Jasn, 2014,25(1):65-80.
[58]Kriegel AJ,Liu Y,Cohen B,et al.MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis[J]. Physiol Genomics,2012,44(4):259-267.
[59]Kantharidis P,Wang B,Carew RM,et al. Diabetes complications:
the micro RNA perspective[J]. Diabetes,2011,60(7):1832-1837.
[60]Lan H Y, Chung A C. TGF-β/Smad signaling in kidney disease[J]. Seminars in Nephrology, 2012,32(3):236-243.
[61]Chung AC, Dong Y, Yang W,et al.Smad7 suppresses renal fibrosis via altering expression of TGF-β/Smad3-regulated microRNAs[J]. Molecular Therapy the Journal of the American Society of Gene Therapy, 2013, 21(2):388-398.
[62]Zhong X,Chung AC,Chen HY,et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes[J]. Diabetologia,2013,56(3):663-674.
[63]Wang B,Koh P,Winbanks C,et al. miR-200a Prevents renal fibrogenesis through repression of TGF -beta2 expression [J].Diabetes,2011,60(1):280-287.
[64]Zhang Y,Huang XR,Wei LH,et al. miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling[J]. Mol Ther,2014,22(5):974-985.