非编码RNA与肝纤维化的研究进展


 非编码NA与肝纤维化的研究进展

樊政华  张伟辉

(哈尔滨医科大学附属第一医院 微创胆道外科,哈尔滨 150001)

摘要肝纤维化是一种病理生理过程,其中细胞外基质在肝组织中的过度沉积和结缔组织的异常增殖是由各种致病因子的长期刺激引起的,其本质是一种炎症增生修复反应。近来研究表明,许多非编码RNA(Non-coding RNA,ncRNA)与肝纤维化的发生发展关系密切,它在肝脏细胞的增殖活化,凋亡分解及信号通路调节等各个方面都发挥着重要作用,探索其在肝纤维化过程中的调控机制,不仅可以进一步熟悉和理解肝纤维化的生理病理,并且可以寻找合适的分子靶点,为肝纤维化的诊断治疗和预后带来新思路。

关键词:肝纤维化;细胞外基质;HSC;ncRNA

Research progress of non coding RNA and liver fibrosis

FAN ZhengHuaZHANG Weihui. ( Department of Minimally Invasive Biliary Surgery,The First Affiliated Hospital of Harbin Medical University,Harbin 150001,China)

Abstract: Hepatic fibrosis is a pathophysiological process, in which excessive deposition of extracellular matrix in liver tissue and abnormal proliferation of connective tissue are caused by long-term stimulation of various pathogenic factors, and its essence is an inflammatory proliferation repair response. Recent studies have shown that many non-coding RNAs (ncRNAs) are closely related to the occurrence and development of hepatic fibrosis. They play an important role in the proliferation and activation of hepatocytes, apoptotic decomposition and signal pathway regulation. Exploring the regulation mechanism of ncRNAs in the process of hepatic fibrosis can not only further familiarize and understand the physiology and pathology of hepatic fibrosis, but also play an important role in the regulation of hepatic fibrosis. Finding suitable molecular targets will bring new ideas for the diagnosis, treatment and prognosis of liver fibrosis.

Key words: hepatic fibrosis; extracellular matrix; HSC; ncRNA

 肝纤维化是指由各种内源性和外源性损伤因子如炎症、细菌病毒感染、酒精药物毒性或遗传因素等各作用于肝脏细胞导致的肝内结缔组织异常增生细胞外基质沉积、肝星状细胞(hepatic stellate cell,HSC)活化的重要病理过程,是多种慢性肝病,包括病毒性肝炎、酒精性脂肪肝和胆汁淤积性肝病向肝硬化转变必经阶段。HSC的激活在肝纤维化形成过程中起主导作用[1],在正常情况下通常保持静止状态,其增殖活性及合成胶原的能力较低。但在损伤因子的作用下,HSC可激活并转化肌成纤维样细胞肌成纤维细胞可以分泌促成纤维介质,如转化生长因子β(transforming growth factor-β,TGF-β)、结缔组织生长因子、基质金属蛋白酶组织抑制剂等。并生成胶原、纤维连接蛋白和层粘连蛋白等细胞外基质,从而在肝纤维化的发生中发挥关键作用。

ncRNA是指基因转录过程中不编码蛋白质的RNA分子,其中包括微小RNA(microRNA,miRNA)、长链非编码RNA(long noncoding RNA,lncRNA)、核小RNA(small nuclearRNA)snRNA、核仁小分子RNA(small nucleolar RNA,snoRNA)、干扰短RNA(short interfering RNA,si RNA)等。它和稳定存在的、编码蛋白质的信使RNA(messenger RNA,mRNA)不同,ncRNA数目庞大、功能多样,可广泛参与转录和转录后调控、染色质修饰、蛋白质功能调控等过程。近来研究表明,许多ncRNA参与调控肝纤维化的发展,其在肝纤维化中的作用机制的研究已成为当前的热点,本文就ncRNA在肝纤维化过程中作用的相关机制予以综述。

1 肝纤维化过程中miRNA的作用机制

miRNA是由长约22个核苷酸组成的内源性单链非编码RNA分子,其在肝纤维化中通过调控TGF-β)/Smads蛋白(drosophila mothers against decapentaplegic protein,Smads)、HedgehogHh)Wnt蛋白(Wnt)、磷脂酰肌醇3-激酶/蛋白激酶B((PI3K/Akt)、核因子κB(nuclear factor kappa-B,NF-κB)、含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase,Caspase)等信号通路,HSC的活化、增殖、调亡、细胞外基质沉积、及上皮细胞-间质转化等多个方面起着重要调节作用[2]

1.1 MiRNA通过TGF-β信号途径调控肝纤维化

TGF-β是一组可调节细胞生长分化的多功能蛋白,其受体激酶底物Smad蛋白可与膜受体结合进入细胞核内,通过调节靶基因的转录影响肝纤维化过程。Yoshiki Murakami等[3]的研究表明miR-199和miR-200家族都与肝纤维化有关mir-199 a*和miR-200 b可通过其候选靶点TGF-β诱导因子(TGIF)与Smads特异性e3泛素蛋白连接酶2(SMURF2)结合,影响HSC增殖活化及上皮-间质转化过程,调节肝纤维化的发展。Xu Sun等[4]研究显示miR-200a在TGF-b1诱导的HSC激活及四氯化碳诱导的大鼠肝纤维化过程中表达降低miR-200a的过表达显著降低了TGF-b1诱导的α-平滑肌激动蛋白(α-SMA)的表达水平,转染miR-200a后可以与其下游β-连环蛋白和TGF-β2靶向结合并抑制信使RNA(Messenger RNA ,mRNA)和蛋白质的表达,阻碍 HSC增殖活化。Yuhua Ji等[5]研究发现,miR-27a可作用于其下游分子靶点Smad5TGF-β通路中腺嘌呤核苷三磷酸-柠檬酸合酶的mRNA,促进HSC活化及降低细胞质脂滴,加剧肝纤维化的发展。Csak [6]提出miR-155在多个水平影响肝纤维化,可通过血小板衍生因子platelet derived growth factorPDGF)Smad2/3和CCAAT/增强子结合蛋白β(CCAAT/enhancer binding protein beta,C/EBPβ)的直接和间接靶点发挥作用。MiR-16在丙型肝炎病毒感染诱导的肝纤维化组织细胞中上调,并通过靶向肝细胞生长因子Smad7负向调节肝纤维化的进展[7]。在四氯化碳诱导的小鼠肝纤维化中miR-30c和miR-193的表达下调,它通过调节锌指蛋白转录因子SNAIL和TGF-β2参与肝纤维化的发展[8]MiR-17-5p通过抑制Smad7表达来调节TGF-β/Smad信号传导途径,进而影响Ⅰ型胶原和a-SMA,促进 HSC的增殖和活化[9]Shuhua Zhao等[10]的研究表明miR-101对TGF-β1诱导的肝细胞上皮-间质转化过程有明显的抑制作用,可通过结合TGF-βI型受体和反式激活因子KLF6的MRNA,减少TGF-βI型受体、TGF-β1、PDGF、结缔组织生长因子(CTGF)和纤维化相关的炎症因子如基质金属蛋白酶1(matrix metalloproteinase,MMP-1)及I型胶原的产生。另外,miR-101还能靶向结合(Zinc Finger E-Box Binding Homeobox 1)ZEB1 mRNA的3’-非翻译区抑制ZEB1表达,影响肝纤维化的发展。Tomohiro Ogawa等[11]的研究显示TGF-β可通过Smad3与miR-29基因启动子结合诱导miR-29下调,同时发现Smad7基因敲除后却能增强TGF-β对miR-29抑制作用。在肝纤维化中,miR-29b具有抑制TGF-β1的作用,miR-29 b可通过直接与HSCI型胶原蛋白基因的3’-非翻译区和特异性蛋白1基因的3’-非翻译区结合共同抑制I型胶原表达,从而激活HSC。miR-30抑制TGF-β信号通路是通过抑制其靶基因kruppel样转录因子11来促进Smad7的表达,使HSC的增殖和迁移能力相应减弱,逐渐由激活状态转化为失活状态,由此抑制肝纤维化发展[12]。Lakner等[13]将大鼠活化的HSCmiR-19b的表达水平提高后,TGF-β途径中TGF-βII型受体和Smad3表达明显下降miR 19b可与TGF-βRII的3’-非翻译区直接结合,减少Ⅰ型胶原及α1和α2前胶原mRNA的表达,抑制纤维化过程中HSC的激活。He等[14]发现miR-146a的表达在肝纤维化过程中以剂量依赖性方式下调,TGF-β1刺激的HSC中,miR-146a可以显着降低Smad4蛋白的表达,表明miR-146a通过Smad4表达的转录后抑制参与了TGF-β1诱导的HSC增殖的调控。Wang[15]等研究了miR-181a/b对HSC T6增殖的影响,该研究发现TGFβ1处理的HSC T6中miR-181a/b(特别是miR-181b)显著上调,还证实miR-181b可通过调节细胞周期调节因子p27来促进HSC增殖。Iizuka等[16]研究显示在肝纤维化大鼠肝组织中miR-214-5p的表达显著上调,还证实其过表达可激活TGF-β信号传导途径,其机制与Twist-1基因表达的上调有关。

1.2 MiRNA通过Hh信号途径调控肝纤维化

Hh信号通路Hh配体SHH、IHH、膜蛋白受体Patched( PTCH1、PTCH2)、Smoothened(SMO)3种锌指转录因子( GLI1、GLI2和GLI3)等组成,在肝纤维化中与HSC的增殖活化密切相关。Fu-jun Yu等[17}研究表明miR-1522参与了其靶基因DNA甲基转移酶1(DNMT1)mRNA的降解和转录后调控,促进了Hh信号途径的负调节因子Protein patched homolog 1(PTCH1)启动子的去甲基化,从而抑制肝纤维化中的上皮细胞-间质转化过程Kumar V等[18]研究显示在胆总管结扎术诱导的小鼠肝纤维化中模型中,miR-29b1可通过调控IV型胶原蛋白、C-myc癌基因、血小板衍生因子-β、PI3K/AKT等多种促纤维化基因,抑制Hh信号途径的活性及肝脏细胞外基质的沉积,影响肝纤维化的发展。在大鼠HSC活化后miR-200a的表达相应下调,其可通过调节锌指转录因子Gli2及上皮-间充质转换、Wnt/β-连环蛋白和TGF-β信号传导途径抑制Hh信号传导,减少相关基因的表达,影响肝纤维化过程[19]Jeongeun Hyun等[20]的研究发现在活化的HSCs中,miR-378a-3p的水平与Hh信号通路中锌指转录因子Gli3表达呈负相关,miR-378a-3p可通过靶向调节Gli3的活性,影响HSC的增殖活化。

1.3 MiRNA通过Wnt信号途径调控肝纤维化

Wnt是一类分泌型糖蛋白,以HSC自分泌的方式释放到细胞外,其调节HSC的活化是通过结合HSC膜上的卷曲蛋白/低密度脂蛋白受体相关蛋白(Fz/LRP)[21]。经典的Wnt通路Wnt/β-连环蛋白信号通路主要由Wnt蛋白、Dishevelled(Dsh或 Dvl)蛋白、特异受体卷曲蛋白、糖原合成激酶3β(GSK-3β)、胞质蛋白(β-catenin)及TCF/LEF转录因子家族(T-cell factor/lymphoid enhancer factor,TCF/LEF)等相关转录基因构成。miR-146a-5p的表达在活化的HSC中下调,其抑制HSC的活化和增殖的机制是通过负向调控Wnt1和Wnt5a的表达,同时使与肝纤维化相关的α-SMA、I型胶原MMP2基因的表达也降低,Smad7的表达增加,从而抑制肝纤维化的发生[22]。在肝纤维化中miR-145通过抑制靶基因转录因子ZEB2的表达,抑制Wnt/β-连环蛋白通路的β-连环蛋白及其下游基因细胞周期蛋白D1和C-myc癌基因,影响HSC的增殖活化[23]。在激活的HSCmiR-378a-3p的表达下调,其通过抑制靶基因Wnt10a促进Wnt/β-连环蛋白通路中β-连环蛋白的磷酸化和糖原合成酶激酶-3的表达,从而影响肝纤维化的发生[24]

1.4 MiRNA通过PI3K/Akt信号途径调控肝纤维化

PI3K/Akt信号通路广泛存在于各种细胞中,通过调节下游相关蛋白的表达,介导细胞的增殖、活化、迁移、存活以及凋亡。人第10号染色体缺失的磷酸酶(PTEN)PI3K/Akt信号通路的负向调节因子,在肝纤维化中它编码的产物可以三磷酰肌醇(IP3)去磷酸化为双膦酰肌醇(IP2),从而抑制Akt的活化来抑制HSC增殖,诱导其凋亡的发生[25]Er-Bao Bian等[26]研究表明,在体内PTEN表达的缺失可由基因突变(如缺失或插入)或表观遗传学(包括启动子高度甲基化)所致,用DNA甲基化抑制剂5-aza-2′-脱氧胞苷可阻断DNA甲基化,能抑制HSC-T6细胞增殖,下调I型胶原和α-SMA基因的表达,且DNA甲基转移酶( DNA- methyltransferase,DNMT)1的上调可导致PTEN基因启动子甲基化,PTEN基因表达下调,HSC活性增强。Ramiro Garzon等[27]的研究显示,mir-29b的表达不仅通过直接靶向DNMT3a3b而促进DNA低甲基化,还可通过下调已知的DNMT1基因的转激活因子Sp1,间接降低DNMT1的表达来促进DNA低甲基化,在肝纤维化过程中,miR-29b在体内和体外均有表达下降,其可以通过直接作用于靶基因DNMT3b导致PTEN的甲基化状态缺失,由此抑制I型胶原II型胶原III型胶原a-SMA的表达[28],降低HSC的活化。并且在用四氯化碳处理的小鼠中,miR-29b的引入使α-SMAI型胶原和TIMP-1的表达明显下调,mir-29b显著降HSC细胞和纤维化动物模型中pIK3R1、Akt3和p-Akt3蛋白的表达,导致PI3K/AKT信号通路失活,诱导HSC的凋亡[29]。Jun Wei[30]等的研究表明miR-21可作用于PTEN以降低其表达,而PTEN失活则会增加p-Akt及a-SMA、I型胶原MMP2的表达,使HSC转化为肌成纤维细胞和细胞外基质重塑及间质纤维化,影响肝纤维化的发生。在肝纤维化过程中miR-181b可通过调节PTEN参与PTEN/Akt信号通路来激活HSC,也可通过抑制p27蛋白促进HSC的增殖活化[31]。在HSC活化过程中miR-200b可通过调节靶基因FOG2促进HSC增殖和迁移,从而增强PI3K/Akt信号通路中Akt的磷酸化,影响肝纤维化的发生[32]miR-222可作用于PPP2R2A的mRNA的3′-UTR,导致PPP2R2A的表达降低来激活Akt信号传导途径,抑制HSC细胞凋亡。体内研究表明miR-222的表达在胆道闭锁肝纤维化患者的肝脏样品中明显升高,miR-222抑制剂可抑制人肝星状细胞LX-2细胞的增殖,这间接支持了miR-222参与激活Akt信号途径[33]Zhuo-Jian Li等[34]研究显示miR-33a的表达与I型胶原增殖及α-SMA的表达密切相关,转染miR-33a抑制剂后,其潜在靶点过氧化物酶体增殖物激活受体-α(PPAR-a)mRNA和蛋白表达显著增加,影响PI3K/Akt信号通路的激活,降低HSC相关细胞外基质的表达,抑制肝纤维化的发生。

1.5 MiRNA通过NF-κB信号途径调控肝纤维化

NF-κB一类核蛋白因子,可广泛参与某些生物过程,如免疫反应,炎症反应,细胞增殖和分化NF-KB家族主要由p50、p52、rela(P65)、RelB和c-rel组成,它们形成同源二聚体或异二聚体,p50-rela(又称p50-p65),是NF-KB中含量最多的一种在静止状态的细胞中,大部分的NF-KB二聚体通过与抑制因子(IkBa、IkBβ、IkBε中的某一个结合处于无活性的状态各种信号通过降解IkBs的方式来活化NF-kB,IkBs可被IkBs激酶(IKK)磷酸化活化的NF-kB然后转移到细胞核内与DNA结合,并作为转录因子发挥作用。NF-kB是炎症反应的重要介质,通过激活细胞因子级联反应和产生其他促炎介质,刺激了HSC的激活,导致肝细胞上皮-间质转化,从而影响肝纤维化的发生。最近的研究表明,一些miRNA可调节NF-kB的表达。FengX等[35]研究了miR-126HSC活化过程中的作用机制, 观察到上调miR-126的表达在转录后水平明显抑制了下游靶点NF-kB抑制剂α(IkBa)的表达,导致NF-kB激活.并且促进其下游信号因子如TGF-b1、I型胶原的表达,然而,miR-126抑制后可导致IkBa蛋白的上调,抑制NF-kB的活化从而影响肝纤维化的发生Hyun等[36]发现miR-378a-3p的表达在肝纤维化研究中被下调使用 Smoothened基因激活NF-kB可抑制miR-378a-3p的转录表达,miR-378a-3p减少可引起锌指蛋白gli3和gli2的表达增加,而加速或促进hh信号蛋白和肝纤维化的的表达。

1.6 MiRNA通过ERK信号途径调控肝纤维化

细胞外调节蛋白激酶(Extracellular RegulatedProtein Kinases,ERK)包括ERK1和ERK2,是一类丝/苏氨酸蛋白激酶,它可以参与调节各种生物效应,如细胞增殖、和凋亡Dai等[37]研究证明了ERK1信号通路可以通过促进有丝分裂和纤维化加速HSC的活化,并在肝实质上皮细胞的上皮-间质转化过程中加速成纤维细胞的转变,因而抑制ERK1信号通路或许可以起到抑制肝纤维化发展的作用。Ye D[38]研究表明miR-155可直接结合T细胞因子4(T cell factor4,TCF4)mRNA的3’- 非翻译区和血管紧张素Ⅱ受体1(angiotensinⅡtype1 receptor,AGTR1),TCF4为促进上皮-间质转化的转录因子,AGTR1可增强ERK1信号通路,TCF4和AGTR1可能是miR-155的靶基因,并通过调节上皮-间质转化过程和ERK1途径促进肝纤维化。Juan Zhao等[39]研究显示在肝硬化患者和大鼠血清和肝组织中miR-21含量显著升高,miR-21不仅可以通过靶向抑制SPRY2表达刺激HSC活化以增加ERK1信号,同时还通过下调肝细胞核因4a来触发肝细胞的上皮-间质转化,从而促进成纤维细胞的积累,影响肝纤维化的进展。

1.7 MiRNA通过Caspase信号途径调控肝纤维化

Caspase是一类富含半胱氨酸的蛋白酶家族,通在细胞中以无活性的酶原形式存在,其内部特异的天冬氨酸残基部位经裂解加工后,可引起酶原的激活并诱导HSC细胞的凋亡。Can-Jie Guo[40]等研究显示在大鼠静止期和活化期HSCs中miR-15b和miR-16水平与B淋巴细胞瘤-2基因水平负相关,其可能通过靶向Bcl-2和caspase信号途径而对HSC细胞凋亡起关键作用。

2  在肝纤维化过程中lncRNA的作用机制

lncRNA是广泛存在于真核细胞内,是一种由聚合酶II转录的长度超过200个核苷酸的非编码RNA,本身并不编码蛋白质,但其在肝脏纤维化过程中发挥着重要作用。最近的研究发现,lncRNA-MALAT1不仅作为内源竞争性RNA通过碱基互补配对与miR-101或PrimiR-101b结合,而且还促进靶基因Rac1的表达。它还可与组蛋白去乙酰化酶SIRT结合以抑制其降解,从而促进HSC的活化[41]。研究表明,浆细胞瘤变异易位1- PVT1通过竞争性结合miR-152抑制PTCH1表达激活Hedgehog和上皮-间质转化信号通路,从而促进HSC活化并影响肝纤维化的形成[42]。Zhang等[43]研究发现lncRNA GAS5通RNA诱导的沉默复合体(RISC)负向调miR-21,miR-21可通过调节PTEN以及PKB/Akt通路上调MMP-2的表达,进而参与肝纤维化。lncRNA GAS5还可竞争性结合miR-222,使其靶基因周期素依赖激酶抑制剂 p27的表达增加,从而抑制HSC的活化及肝纤维化的发生[44]。Yanga等[45]研究发现MECP2过表达将会降低HSC细胞中lncRNA H19的水平,然而敲除MECP2可降低其表达。同时,敲除lncRNA H19可增加IGF1R蛋白的表达水平,过表达则可减少,因此lncRNA H19 对肝纤维化的发展具有双重调节作用。Er-Bao等[46]表明,成功转染miR-148b的HSC降低了HOTAIR的萤光素酶活性,明显抑制了lncRNA HOTAIR介导的HSC活化。敲除miR-148b后,lncRNA HOTAIR表达相应增加,表 HOTAIR和miR-148b是相互作用的靶点并且双向调控HSC的活化。lncRNA MEG3能够激活P53,并且活化的P53转移至线粒体外膜与BC1-2家族成员相互作用,促使细胞色素C的释放增加,激活半胱天冬酶及P53/caspase-3信号传导途径以诱导HSC失活,从而抑制肝纤维化的发展[47]。有研究发现lnc RNA-ATB在肝纤维化病人的肝组织和血浆中的表达显著增加,lnc-ATB可以与TGF-βRII、SMAD2竞争性结合miR-425-5p来促进胶原的形成及HSC活化,从而影响肝纤维化的发生[48]lncRNA-APTR的表达在活化的HSC和肝硬化患者的血清中明显增加,沉默APTR能够解除HSCTGF-β1诱导的a-SMA表达的上调;敲除APTR 能够抑制体内HSC的激活和胶原的累积,同时其细胞周期和细胞增殖也被抑制,而这种作用可以通过沉默P21得到缓解,说明APTR可以通过抑制p21的转录来促进 HSC的激活和增殖,影响肝纤维化的发生[49]

3、问题与展望  

除了miRNA、lncRNA之外,其它的ncRNA如snRNA、snoRNA、siRNA等也在肝纤维化中起重要作用,但由于数目众多,并且ncRNA可以作用于不同的靶基因以调节肝纤维化,而相同的靶基因又可以受到不同ncRNA的影响,其关系错综复杂,我们对于其中机制的研究尚处于初期阶段,因此对于如何筛选在肝纤维化过程中发挥重要作用的ncRNA,以及了解其调控机制,利用肝纤维化发展过程中作用机制的多个基因靶点、环节,研发更为安全、高效、有针对性的药物,这将对肝纤维化的预防和治疗产生深远的影响,为阐述慢性肝病的病理生理过程提供新思路,也为慢性肝病的治疗提供新的方向          

 

                

                       参考文献

[1TackeF, Weiskirchen R.Update on hepatic stellate cells: pathogenic role in liver fi Brosis and novel isolation techniques [J]. Expert Rev Gastroenterol Hepatol, 2012 6: 67-80

[2] 郭鑫昕,苏式兵,等,MicroRNAs与肝纤维化及相关中医药研究的进展[J].世界科学技术-中医药现代化,2016,18(09):1515-1521.

[3] Murakami Y, Toyoda H, Tanaka M, et al. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 familiesJ]. PLoS One. 2011;6(1):e16081.

[4] Sun X,He Y,Ma TT,et al.Participation of miR-200a in TGF-β1-mediated hepatic stellate cell activationJ].Mol Cell Biochem 2014;388:11-23.

[5] Ji Y,Zhang J,Wang W.Functional study of miR-27a in human hepatic stellate cells by proteomic analysis: comprehensive view and a role in myogenic tans-differentiation[J].PloS one,2014,9(9):e108351.

[6] Csak T, Bala S, Lippai D, et al. MicroRNA-155 Deficiency Attenuates Liver Steatosis and Fibrosis without Reducing Inflammation in a Mouse Model of SteatohepatitisJ]. PLoS One. 2015;10(6):e0129251.

[7] Zhu B,Wei XX,Wang TB,et al.Increased miR-16 expression induced by hepatitis C virus infection promotes liver fibrosis through downregulation of hepatocyte growth factor and Smad7[J].Archives of virology,2015,160(8):2043-2050.

[8] Roy S,Benz F,Vargas Cardenas D,et al.miR-30c and miR-193 are a part of the TGF-β-dependent regulatory network controlling extracellular matrix genes in liver fibrosis[J].Journal of digestive diseases,2015,16(9):513-524.

[9] Yu F, Guo Y, Chen B, et al. MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7. Lab Invest, 2015, 95(7): 781-789

[10] Zhao S,Zhang Y,Zheng X,et al.Loss of MicroRNA-101 Promotes Epithelial to Mesenchymal Transition in Hepatocytes[J].Journal of cellular physiology,2015,230(11):2706-2717.

[11] Ogawa T,Iizuka M,Sekiya Y,et al.Suppression of type I collagen production by microRNA-29b in cultured human stellate cells[J].Biochemical and biophysical research communications,2010,391(1):316-321.

[12] Tu X,Zheng X,Li H,et al.MicroRNA-30 Protects Against Carbon Tetrachloride-induced

Liver Fibrosis by Attenuating Transforming Growth Factor Beta Signaling in Hepatic Stellate

Cells[J].Toxicological sciences:an  official journal of the Society of Toxicology,2015,

146(1):157-169.

[13] Lakner AM,Steuerwald NM,Walling TL,et al.Inhibitory effects of microRNA 19b in hepatic

stellate cell-mediated fibrogenesis[J].Hepatology (Baltimore, Md.),2012,56(1):300-310.

[14] He Y,Huang C,Sun X,et al.MicroRNA-146a modulates TGF-beta1-induced hepatic stellate

cell proliferation by targeting SMAD4[J].Cellular signalling,2012,24(10):1923-1930.

[15] Wang B,Li W,Guo K,et al.miR-181b promotes hepatic stellate cells proliferation by targeting p27 and is elevated in the serum of cirrhosis patients[J].Biochemical and biophysical research communications,2012,421(1):4-8.

[16] Iizuka M,Ogawa T,Enomoto M,et al.Inducton of microRNA-214-5p in human and rodent liver fibrosis[J]Fibrogenesis Tissue Repair,2012,5(1):12.

[17] Yu F,Lu Z,Chen B,et al.Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT1-mediated Patched1 methylation[J].Journal of cellular and molecular medicine,2015,19(11):2617-2632.

[18] Kumar V,Mondal G,Dutta R.Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis[J].Biomaterials 2016;76:144-156.

[19] Yu F,Zheng Y,Hong W,et al.MicroRNA200a suppresses epithelialtomesenchymal transition in rat hepatic stellate cells via GLI family zinc finger 2[J].Molecular medicine reports,2015,12(6):8121-8128.

[20] Hyun J, Wang S, Kim J, et al. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression[J].Nat Commun, 2016, 7: 10993

[21] 朱志杰,阮君山,李尧,等.Wnt 信号通路诱导肿瘤细胞上皮间质转化的研究进展[J].中国药理学通报,2012,28(7):904-907.

[22] Du J,Niu X,Wang Y,et al.MiR-146a-5p suppresses activation and proliferation of hepatic stellate cells in nonalcoholic fibrosing steatohepatitis through directly targeting Wnt1 and Wnt5a[J].Scientific reports,2015,5():16163.

[23] Zhou DD, Wang X, Wang Y, et al. MicroRNA-145 inhibits hepatic stellate cell  activation  and  proliferation  by  targeting  ZEB2  through Wnt/beta-catenin pathway [J]. Molecular immunology, 2016,75:151-160

[24] Yu F,Fan X,Chen B,et al.Activation of Hepatic Stellate Cells is Inhibited by microRNA-378a-3p via Wnt10a[J].Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry,and Pharmacologyy, 2016, 39(6): 2409-2420.

[25] 潘澎,刘绍能.PI3K/AKT信号通路与肝纤维化[J].临床肝胆病杂志,2013,29(5):389-396.

[26] Bian EB,Huang C,Ma TT,et al.DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats[J].Toxicol Appl Pharmacol 2012;264:13-22.

[27] Garzon R,Liu S,Fabbri M,et al.MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1[J].Blood,2009,113(25):6411-6418.

[28] Zheng J,Wu C,Lin Z,et al.Curcumin up-regulates phosphatase and tensin homologue deleted on chromosome 10 through microRNA-mediated control of DNA methylation--a novel mechanism suppressing liver fibrosis[J].The FEBS journal,2014,281(1):88-103.

[29] Wang J,Chu ES,Chen HY,et al.microRNA-29b prevents liver fibrosis by attenuating hepatic stellate cell activation and inducing apoptosis through targeting PI3K/AKT pathway[J].Oncotarget,2015,6(9):7325-7338.

[30] Wei J,Feng L,Li Z,et al.MicroRNA-21 activates hepatic stellate cells via PTEN/Akt signaling[J].Biomedicine & pharmacotherapy = Biomédecine & pharmacothérapie2013,67(5)

387-392.

[31] Zheng J,Wu C,Xu Z,et al.Hepatic stellate cell is activated by microRNA-181b via PTEN/Akt pathway[J].Molecular and cellular biochemistry,2015,398(1-2):1-9.

[32] Xiao Y,Wang J,Chen Y,et al.Up-regulation of miR-200b in biliary atresia patients accelerates proliferation and migration of hepatic stallate cells by activating PI3K/Akt signaling[J].Cellular signalling,2014,26(5):925-932.

[33] Dong R,Zheng Y,Chen G,et al.miR-222 overexpression may contribute to liver fibrosis in biliary atresia by targeting PPP2R2A[J].Journal of pediatric gastroenterology and nutrition,2015,60(1):84-90.

[34] Li ZJ,Ou-Yang PH.Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells[J].Cellular signalling,2014,26(1):141-148. 

[35] Feng X,Tan W,Cheng S,et al.Upregulation of microRNA-126 in hepatic stellate cells may affect pathogenesis of liver fibrosis through the NF-κB pathway[J].DNA and cell biology,2015,34(7):470-480.

[36] Hyun J,Wang S,Kim J,et al.MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression[J].Nat Commun 2016;7:10993.

[37] Dai W,Zhao J,Tang N,et al.MicroRNA-155 attenuates activation of hepatic stellate cell by simultaneously preventing EMT process and ERK1 signalling pathway[J].Liver international : official journal of the International Association for the Study of the Liver,2015,35(4):1234-1243.

[38] Ye D,Dai L,Yao Y,et al.miR-155 Inhibits Nucleus Pulposus Cells' Degeneration through Targeting ERK 1/2[J].Disease markers,2016,2016():6984270

 

[39] Zhao J,Tang N,Wu K,et al.MiR-21 simultaneously regulates ERK1 signaling in HSC activation and hepatocyte EMT in hepatic fibrosis[J].PloS one,2014,9(10):e108005.

[40] Guo CJ,Pan Q,Li DG,et al.miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis[J].Journal of hepatology,2009,50(4)

:766-778.

[41] Wu Y,Liu X,Zhou Q,et al.Silent information regulator 1 (SIRT1) ameliorates liver fibrosis via promoting activated stellate cell apoptosis and reversion[J].Toxicology and applied pharmacology,2015,289(2):163-176.

[42] Zheng J,Yu F,Dong P,et al.Long non-coding RNA PVT1 activates hepatic stellate cells through competitively binding microRNA-152[J].Oncotarget,2016,7(39):62886-62897.

[43] Zhang Z,Zhu Z,Watabe K,et al.Negative regulation of lncRNA GAS5 by miR-21[J].Cell death and differentiation,2013,20(11):1558-1568.

[44] Yu F, Zheng J, Mao Y, et al. Long Non-coding RNA Growth Arrest-specific Transcript 5 (GASS) Inhibits Liver Fibrogenesis through a Mechanism of Competing Endogenous RNA [J]. The Journal of biological chemistry,2015,290(47):28286-98.

[45]  Zhou X,Ye F, Yin C,et al.The interaction between miR-141 and lncRNA-H19 in regulating cell proliferation and migration in gastric cancer[J].Cell Physiol Biochem, 2015,36(4)

:1440-1452.

[46] Bian EB,Wang YY,Yang Y,et al.Hotair facilitates hepatic stellate cells activation and fibrogenesis in the liver[J].null,2017,1863(3):674-686.

[47] He Y,Wu YT,Huang C,et al.Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis.Biochim Biophys Acta 2014;1842:2204-2215.

[48] Fu N,Niu X,Wang Y,et al.Role of LncRNA-activated by transforming growth factor beta in the progression of hepatitis C virus-related liver fibrosis[J].Discovery medicine,

2016,22(119):29-42.

[49] Yu F,Zheng J,Mao Y,et al.Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis[J].Biochemical and biophysical research communications,2015,463(4):679-685.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

微信二维码
扫码添加微信咨询
QQ客服:1663286777
电话:137-1883-9017
收到信息将及时回复